36,622 research outputs found

    Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping

    Get PDF
    The continuously increasing demand of accurate quantitative high quality information on land surface properties will be faced by a new generation of environmental Earth observation (EO) missions. One current example, associated with a high potential to contribute to those demands, is the multi-spectral ESA Sentinel-2 (S2) system. The present study focuses on the evaluation of spectral information content needed for crop leaf area index (LAI) mapping in view of the future sensors. Data from a field campaign were used to determine the optimal spectral sampling from available S2 bands applying inversion of a radiative transfer model (PROSAIL) with look-up table (LUT) and artificial neural network (ANN) approaches. Overall LAI estimation performance of the proposed LUT approach (LUTN₅₀) was comparable in terms of retrieval performances with a tested and approved ANN method. Employing seven- and eight-band combinations, the LUTN₅₀ approach obtained LAI RMSE of 0.53 and normalized LAI RMSE of 0.12, which was comparable to the results of the ANN. However, the LUTN50 method showed a higher robustness and insensitivity to different band settings. Most frequently selected wavebands were located in near infrared and red edge spectral regions. In conclusion, our results emphasize the potential benefits of the Sentinel-2 mission for agricultural applications

    Outdoor thermal and visual perception of natural cool materials for roof and urban paving

    Get PDF
    Given the acknowledged thermal performance of natural light color gravels applied as cool roof and cool urban paving, this work is aimed at investigating if such behavior is perceivable by pedestrians, who are questioned in this paper about their visual and thermal comfort perception. In fact, there are still related aspects to analyze, in order to optimize their application and provide a comfortable space for users, both on the thermal and the visual point of view. Therefore, the question that this work wants to answer is: given their intrinsic characteristics, do these materials create a sensitive thermally and visually more comfortable environment for pedestrians? In order to address this uninvestigated issue, users’ judgment about visual and thermal comfort of these surfaces is considered, also by comparing them with grassland and asphalt. Also, the statistical correspondence between physical properties of such materials and possible correspondence with respect to human perception with varying weather conditions is analyzed. Given the relatively high reflectance of these materials, it appears particularly important to evaluate these aspects, to consciously apply them as urban paving or roof covering by optimizing their natural passive cooling potential. In this preliminary study, users’ response to these surfaces is evaluated by mean of field surveys, both on the thermal and the visual evaluation, and contemporary in-field measurements of surface parameters. Also, human perception with respect to these high-reflectance surfaces’ is compared with the one related to grassland and asphalt, with varying weather conditions. Then, a statistical analysis is performed to investigate the differences among different gravels, grassland and asphalt, based on surveys’ results. The results show how pedestrians, questioned during summer days, prefer grassland, while asphalt is the less favorite surface both visually and thermally; there is a small difference between gravels’ types evaluation, while weather variability affect the preferences

    Topological characterization of antireflective and hydrophobic rough surfaces: are random process theory and fractal modeling applicable?

    Get PDF
    The random process theory (RPT) has been widely applied to predict the joint probability distribution functions (PDFs) of asperity heights and curvatures of rough surfaces. A check of the predictions of RPT against the actual statistics of numerically generated random fractal surfaces and of real rough surfaces has been only partially undertaken. The present experimental and numerical study provides a deep critical comparison on this matter, providing some insight into the capabilities and limitations in applying RPT and fractal modeling to antireflective and hydrophobic rough surfaces, two important types of textured surfaces. A multi-resolution experimental campaign by using a confocal profilometer with different lenses is carried out and a comprehensive software for the statistical description of rough surfaces is developed. It is found that the topology of the analyzed textured surfaces cannot be fully described according to RPT and fractal modeling. The following complexities emerge: (i) the presence of cut-offs or bi-fractality in the power-law power-spectral density (PSD) functions; (ii) a more pronounced shift of the PSD by changing resolution as compared to what expected from fractal modeling; (iii) inaccuracy of the RPT in describing the joint PDFs of asperity heights and curvatures of textured surfaces; (iv) lack of resolution-invariance of joint PDFs of textured surfaces in case of special surface treatments, not accounted by fractal modeling.Comment: 21 pages, 13 figure

    Use of high-dimensional spectral data to evaluate organic matter, reflectance relationships in soils

    Get PDF
    Recent breakthroughs in remote sensing technology have led to the development of a spaceborne high spectral resolution imaging sensor, HIRIS, to be launched in the mid-1990s for observation of earth surface features. The effects of organic carbon content on soil reflectance over the spectral range of HIRIS, and to examine the contributions of humic and fulvic acid fractions to soil reflectance was evaluated. Organic matter from four Indiana agricultural soils was extracted, fractionated, and purified, and six individual components of each soil were isolated and prepared for spectral analysis. The four soils, ranging in organic carbon content from 0.99 percent, represented various combinations of genetic parameters such as parent material, age, drainage, and native vegetation. An experimental procedure was developed to measure reflectance of very small soil and organic component samples in the laboratory, simulating the spectral coverage and resolution of the HIRIS sensor. Reflectance in 210 narrow (10 nm) bands was measured using the CARY 17D spectrophotometer over the 400 to 2500 nm wavelength range. Reflectance data were analyzed statistically to determine the regions of the reflective spectrum which provided useful information about soil organic matter content and composition. Wavebands providing significant information about soil organic carbon content were located in all three major regions of the reflective spectrum: visible, near infrared, and middle infrared. The purified humic acid fractions of the four soils were separable in six bands in the 1600 to 2400 nm range, suggesting that longwave middle infrared reflectance may be useful as a non-destructive laboratory technique for humic acid characterization

    Colorimetry technique for scalable characterization of suspended graphene

    Full text link
    Previous statistical studies on the mechanical properties of chemical-vapor-deposited (CVD) suspended graphene membranes have been performed by means of measuring individual devices or with techniques that affect the material. Here, we present a colorimetry technique as a parallel, non-invasive, and affordable way of characterizing suspended graphene devices. We exploit Newton rings interference patterns to study the deformation of a double-layer graphene drum 13.2 micrometer in diameter when a pressure step is applied. By studying the time evolution of the deformation, we find that filling the drum cavity with air is 2-5 times slower than when it is purged

    Cool marble building envelopes. The effect of aging on energy performance and aesthetics

    Get PDF
    Marble envelopes represent a relatively common architectural solution used in variety of historic, modern and contemporary building facades. White marble envelopes have been shown to reduce solar heat gains, while improving indoor thermal comfort and energy efficiency in summer time. While marble is useful in this context, the urban atmosphere accelerates the degradation of marble elements. This leads to changes in optical characteristics, hence the aesthetics, and affects the energy efficiency benefits offered by white marble facades. These issues are investigated in order to predict the impact of degradation on energy performance and to the aesthetic value, such as change of color and luminosity. In this study, surface degradation of white marble is analyzed by means of accelerated weathering in the laboratory while examining changes to the optical characteristics of the materials. A dynamic simulation is carried out to assess the energy performance of a building as a case study

    Soil analysis using visible and near infrared spectroscopy

    Get PDF
    Visible-near infrared diffuse reflectance (vis-NIR) spectroscopy is a fast, non-destructive technique well suited for analyses of some of the essential constituents of the soil. These constituents, mainly clay minerals, organic matter and soil water strongly affect conditions for plant growth and influence plant nutrition. Here we describe the process by which vis–NIR spectroscopy can be used to collect soil spectra in the laboratory. Because it is an indirect technique, the succeeding model calibrations and validations that are necessary to obtain reliable predictions about the soil properties of interest, are also described in the chapter
    • 

    corecore