126 research outputs found

    On the fitting of surfaces to data with covariances

    Get PDF
    Copyright Ā© 2000 IEEEWe consider the problem of estimating parameters of a model described by an equation of special form. Specific models arise in the analysis of a wide class of computer vision problems, including conic fitting and estimation of the fundamental matrix. We assume that noisy data are accompanied by (known) covariance matrices characterizing the uncertainty of the measurements. A cost function is first obtained by considering a maximum-likelihood formulation and applying certain necessary approximations that render the problem tractable. A Newton-like iterative scheme is then generated for determining a minimizer of the cost function. Unlike alternative approaches such as Sampson's method or the renormalization technique, the new scheme has as its theoretical limit the minimizer of the cost function. Furthermore, the scheme is simply expressed, efficient, and unsurpassed as a general technique in our testing. An important feature of the method is that it can serve as a basis for conducting theoretical comparison of various estimation approaches.Wojciech Chojnacki, Michael J. Brooks, Anton van den Hengel and Darren Gawle

    Overviews of Optimization Techniques for Geometric Estimation

    Get PDF
    We summarize techniques for optimal geometric estimation from noisy observations for computer vision applications. We first discuss the interpretation of optimality and point out that geometric estimation is different from the standard statistical estimation. We also describe our noise modeling and a theoretical accuracy limit called the KCR lower bound. Then, we formulate estimation techniques based on minimization of a given cost function: least squares (LS), maximum likelihood (ML), which includes reprojection error minimization as a special case, and Sampson error minimization. We describe bundle adjustment and the FNS scheme for numerically solving them and the hyperaccurate correction that improves the accuracy of ML. Next, we formulate estimation techniques not based on minimization of any cost function: iterative reweight, renormalization, and hyper-renormalization. Finally, we show numerical examples to demonstrate that hyper-renormalization has higher accuracy than ML, which has widely been regarded as the most accurate method of all. We conclude that hyper-renormalization is robust to noise and currently is the best method

    Experimental Evaluation of Geometric Fitting Algorithms

    Get PDF
    The convergence performance of typical numerical schemes for geometric fitting for computer vision applications is compared. First, the problem and the associated KCR lower bound are stated. Then, three well known fitting algorithms are described: FNS, HEIV, and renormalization. To these, we add a special variant of Gauss-Newton iterations. For initialization of iterations, random choice, least squares, and Taubinā€™s method are tested. Numerical simulations and real image experiments and conducted for fundamental matrix computation and ellipse fitting, which reveals different characteristics of each method

    Optimality of Maximum Likelihood Estimation for GeometricFitting and the KCR Lower Bound

    Get PDF
    Geometric fitting is one of the most fundamental problems of computer vision. In [8], the author derived a theoretical accuracy bound (KCR lower bound) for geometric fitting in general and proved that maximum likelihood (ML) estimation is statistically optimal. Recently, Chernov and Lesort [3] proved a similar result, using a weaker assumption. In this paper, we compare their formulation with the authorā€™s and describe the background of the problem. We also review recent topics including semiparametric models and discuss remaining issues

    On the Geometries of Conic Section Representation of Noisy Object Boundaries

    Get PDF
    This paper studies some geometrical properties of conic sections and the utilization of these properties for the generation of conic section representations of object boundaries in digital images. Several geometrical features of the conic sections, such as the chord, the characteristic point, the guiding triangles, and their appearances under the tessellation and noise corruption of the digital images are discussed. The study leads to a noniterative algorithm that takes advantage of these features in the process of formulating the conic section parameters and generating the approximations of object boundaries from the given sequences of edge pixels in the images. The results can be optimized with respect to certain different criteria of the fittings

    From FNS to HEIV: A link between two vision parameter estimation methods

    Get PDF
    Copyright Ā© 2004 IEEEProblems requiring accurate determination of parameters from imagebased quantities arise often in computer vision. Two recent, independently developed frameworks for estimating such parameters are the FNS and HEIV schemes. Here, it is shown that FNS and a core version of HEIV are essentially equivalent, solving a common underlying equation via different means. The analysis is driven by the search for a nondegenerate form of a certain generalized eigenvalue problem and effectively leads to a new derivation of the relevant case of the HEIV algorithm. This work may be seen as an extension of previous efforts to rationalize and interrelate a spectrum of estimators, including the renormalization method of Kanatani and the normalized eight-point method of Hartley.Wojciech Chojnacki, Michael J. Brooks, Anton van den Hengel, and Darren Gawle

    Lattice Gluon and Ghost Propagators, and the Strong Coupling in Pure SU(3) Yang-Mills Theory: Finite Lattice Spacing and Volume Effects

    Get PDF
    The dependence of the Landau gauge two point gluon and ghost correlation functions on the lattice spacing and on the physical volume are investigated for pure SU(3) Yang-Mills theory in four dimensions using lattice simulations. We present data from very large lattices up to 1284128^4 and for two lattice spacings 0.100.10 fm and 0.060.06 fm corresponding to volumes of āˆ¼\sim (13 fm)4^4 and āˆ¼\sim (8 fm)4^4, respectively. Our results show that, for sufficiently large physical volumes, both propagators have a mild dependence on the lattice volume. On the other hand, the gluon and ghost propagators change with the lattice spacing aa in the infrared region, with the gluon propagator having a stronger dependence on aa compared to the ghost propagator. In what concerns the strong coupling constant Ī±s(p2)\alpha_s (p^2), as defined from gluon and ghost two point functions, the simulations show a sizeable dependence on the lattice spacing for the infrared region and for momenta up to āˆ¼1\sim 1 GeV

    Ensemble ellipse fitting by spatial median consensus

    Get PDF
    Ellipses are among the most frequently used geometric models in visual pattern recognition and digital image analysis. This work aims to combine the outputs of an ensemble of ellipse fitting methods, so that the deleterious effect of suboptimal fits is alleviated. Therefore, the accuracy of the combined ellipse fit is higher than the accuracy of the individual methods. Three characterizations of the ellipse have been considered by different researchers: algebraic, geometric, and natural. In this paper, the natural characterization has been employed in our method due to its superior performance. Furthermore, five ellipse fitting methods have been chosen to be combined by the proposed consensus method. The experiments include comparisons of our proposal with the original methods and additional ones. Several tests with synthetic and bitmap image datasets demonstrate its great potential with noisy data and the presence of occlusion. The proposed consensus algorithm is the only one that ranks among the first positions for all the tests that were carried out. This demonstrates the suitability of our proposal for practical applications with high occlusion or noise.This work is partially supported by the Ministry of Economy and Competitiveness of Spain [grant numbers TIN2016-75097-P and PPIT.UMA.B1.2017]. It is also partially supported by the Ministry of Science, Innovation and Universities of Spain [grant number RTI2018-094645-B-I00], project name Automated detection with low-cost hardware of unusual activities in video sequences. It is also partially supported by the Autonomous Government of Andalusia (Spain) under project UMA18-FEDERJA-084, project name Detection of anomalous behavior agents by deep learning in low-cost video surveillance intelligent systems. All of them include funds from the European Regional Development Fund (ERDF). The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the SCBI (Supercomputing and Bioinformatics) center of the University of MƔlaga. They also gratefully acknowledge the support of NVIDIA Corporation with the donation of two Titan X GPUs. The authors acknowledge the funding from the Universidad de MƔlaga. Funding for open access charge: Universidad de MƔlaga / CBUA
    • ā€¦
    corecore