435 research outputs found

    Offline Handwritten Kannada Numerals Recognition

    Get PDF
    Handwritten Character Recognition (HCR) is one of the essential aspect in academic and production fields. The recognition system can be either online or offline. There is a large scope for character recognition on hand written papers. India is a multilingual and multi script country, where eighteen official scripts are accepted and have over hundred regional languages. Recognition of unconstrained hand written Indian scripts is difficult because of the presence of numerals, vowels, consonants, vowel modifiers and compound characters. In this paper, recognition of handwritten Kannada numeral characters is implemented and the different Wavelet features are used as feature extraction in this paper. The zonal densities of different region of an image have been extracted in the database. The database consists of 50 samples of each Kannada numeral character. For classification, the K-Nearest Neighbor method is used. Recognition accuracy of 88% has been achieved

    A novel image matching approach for word spotting

    Get PDF
    Word spotting has been adopted and used by various researchers as a complementary technique to Optical Character Recognition for document analysis and retrieval. The various applications of word spotting include document indexing, image retrieval and information filtering. The important factors in word spotting techniques are pre-processing, selection and extraction of proper features and image matching algorithms. The Correlation Similarity Measure (CORR) algorithm is considered to be a faster matching algorithm, originally defined for finding similarities between binary patterns. In the word spotting literature the CORR algorithm has been used successfully to compare the GSC binary features extracted from binary word images, i.e., Gradient, Structural and Concavity (GSC) features. However, the problem with this approach is that binarization of images leads to a loss of very useful information. Furthermore, before extracting GSC binary features the word images must be skew corrected and slant normalized, which is not only difficult but in some cases impossible in Arabic and modified Arabic scripts. We present a new approach in which the Correlation Similarity Measure (CORR) algorithm has been used innovatively to compare Gray-scale word images. In this approach, binarization of images, skew correction and slant normalization of word images are not required at all. The various features, i.e., projection profiles, word profiles and transitional features are extracted from the Gray-scale word images and converted into their binary equivalents, which are compared via CORR algorithm with greater speed and higher accuracy. The experiments have been conducted on Gray-scale versions of newly created handwritten databases of Pashto and Dari languages, written in modified Arabic scripts. For each of these languages we have used 4599 words relating to 21 different word classes collected from 219 writers. The average precision rates achieved for Pashto and Dari languages were 93.18 % and 93.75 %, respectively. The time taken for matching a pair of images was 1.43 milli-seconds. In addition, we will present the handwritten databases for two well-known Indo- Iranian languages, i.e., Pashto and Dari languages. These are large databases which contain six types of data, i.e., Dates, Isolated Digits, Numeral Strings, Isolated Characters, Different Words and Special Symbols, written by native speakers of the corresponding languages

    Adaptive Algorithms for Automated Processing of Document Images

    Get PDF
    Large scale document digitization projects continue to motivate interesting document understanding technologies such as script and language identification, page classification, segmentation and enhancement. Typically, however, solutions are still limited to narrow domains or regular formats such as books, forms, articles or letters and operate best on clean documents scanned in a controlled environment. More general collections of heterogeneous documents challenge the basic assumptions of state-of-the-art technology regarding quality, script, content and layout. Our work explores the use of adaptive algorithms for the automated analysis of noisy and complex document collections. We first propose, implement and evaluate an adaptive clutter detection and removal technique for complex binary documents. Our distance transform based technique aims to remove irregular and independent unwanted foreground content while leaving text content untouched. The novelty of this approach is in its determination of best approximation to clutter-content boundary with text like structures. Second, we describe a page segmentation technique called Voronoi++ for complex layouts which builds upon the state-of-the-art method proposed by Kise [Kise1999]. Our approach does not assume structured text zones and is designed to handle multi-lingual text in both handwritten and printed form. Voronoi++ is a dynamically adaptive and contextually aware approach that considers components' separation features combined with Docstrum [O'Gorman1993] based angular and neighborhood features to form provisional zone hypotheses. These provisional zones are then verified based on the context built from local separation and high-level content features. Finally, our research proposes a generic model to segment and to recognize characters for any complex syllabic or non-syllabic script, using font-models. This concept is based on the fact that font files contain all the information necessary to render text and thus a model for how to decompose them. Instead of script-specific routines, this work is a step towards a generic character and recognition scheme for both Latin and non-Latin scripts

    DTW-Radon-based Shape Descriptor for Pattern Recognition

    Get PDF
    International audienceIn this paper, we present a pattern recognition method that uses dynamic programming (DP) for the alignment of Radon features. The key characteristic of the method is to use dynamic time warping (DTW) to match corresponding pairs of the Radon features for all possible projections. Thanks to DTW, we avoid compressing the feature matrix into a single vector which would otherwise miss information. To reduce the possible number of matchings, we rely on a initial normalisation based on the pattern orientation. A comprehensive study is made using major state-of-the-art shape descriptors over several public datasets of shapes such as graphical symbols (both printed and hand-drawn), handwritten characters and footwear prints. In all tests, the method proves its generic behaviour by providing better recognition performance. Overall, we validate that our method is robust to deformed shape due to distortion, degradation and occlusion

    Preprocessing for Images Captured by Cameras

    Get PDF
    corecore