458 research outputs found

    Prospects for Theranostics in Neurosurgical Imaging: Empowering Confocal Laser Endomicroscopy Diagnostics via Deep Learning

    Get PDF
    Confocal laser endomicroscopy (CLE) is an advanced optical fluorescence imaging technology that has the potential to increase intraoperative precision, extend resection, and tailor surgery for malignant invasive brain tumors because of its subcellular dimension resolution. Despite its promising diagnostic potential, interpreting the gray tone fluorescence images can be difficult for untrained users. In this review, we provide a detailed description of bioinformatical analysis methodology of CLE images that begins to assist the neurosurgeon and pathologist to rapidly connect on-the-fly intraoperative imaging, pathology, and surgical observation into a conclusionary system within the concept of theranostics. We present an overview and discuss deep learning models for automatic detection of the diagnostic CLE images and discuss various training regimes and ensemble modeling effect on the power of deep learning predictive models. Two major approaches reviewed in this paper include the models that can automatically classify CLE images into diagnostic/nondiagnostic, glioma/nonglioma, tumor/injury/normal categories and models that can localize histological features on the CLE images using weakly supervised methods. We also briefly review advances in the deep learning approaches used for CLE image analysis in other organs. Significant advances in speed and precision of automated diagnostic frame selection would augment the diagnostic potential of CLE, improve operative workflow and integration into brain tumor surgery. Such technology and bioinformatics analytics lend themselves to improved precision, personalization, and theranostics in brain tumor treatment.Comment: See the final version published in Frontiers in Oncology here: https://www.frontiersin.org/articles/10.3389/fonc.2018.00240/ful

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Deep Learning for Classification of Brain Tumor Histopathological Images

    Get PDF
    Histopathological image classification has been at the forefront of medical research. We evaluated several deep and non-deep learning models for brain tumor histopathological image classification. The challenges were characterized by an insufficient amount of training data and identical glioma features. We employed transfer learning to tackle these challenges. We also employed some state-of-the-art non-deep learning classifiers on histogram of gradient features extracted from our images, as well as features extracted using CNN activations. Data augmentation was utilized in our study. We obtained an 82% accuracy with DenseNet-201 as our best for the deep learning models and an 83.8% accuracy with ANN for the non-deep learning classifiers. The average of the diagonals of the confusion matrices for each model was calculated as their accuracy. The performance metrics criteria in this study are our model’s precision in classifying each class and their average classification accuracy. Our result emphasizes the significance of deep learning as an invaluable tool for histopathological image studies

    Use of texture feature maps for the refinement of Information derived from digital Intraoral radiographs of lytic and sclerotic lesions

    Get PDF
    The aim of this study was to examine whether additional digital intraoral radiography (DIR) image preprocessing based on textural description methods improves the recognition and differentiation of periapical lesions. (1) DIR image analysis protocols incorporating clustering with the k-means approach (CLU), texture features derived from co-occurrence matrices, first-order features (FOF), gray-tone difference matrices, run-length matrices (RLM), and local binary patterns, were used to transform DIR images derived from 161 input images into textural feature maps. These maps were used to determine the capacity of the DIR representation technique to yield information about the shape of a structure, its pattern, and adequate tissue contrast. The effectiveness of the textural feature maps with regard to detection of lesions was revealed by two radiologists independently with consecutive interrater agreement. (2) High sensitivity and specificity in the recognition of radiological features of lytic lesions, i.e., radiodensity, border definition, and tissue contrast, was accomplished by CLU, FOF energy, and RLM. Detection of sclerotic lesions was refined with the use of RLM. FOF texture contributed substantially to the high sensitivity of diagnosis of sclerotic lesions. (3) Specific DIR texture-based methods markedly increased the sensitivity of the DIR technique. Therefore, application of textural feature mapping constitutes a promising diagnostic tool for improving recognition of dimension and possibly internal structure of the periapical lesions

    Accuracy of computer-aided image analysis in the diagnosis of odontogenic cysts:a systematic review

    Get PDF
    This study aimed to search for scientific evidence concerning the accuracy of computer-assisted analysis for diagnosing odontogenic cysts. A systematic review was conducted according to the PRISMA statements and considering eleven databases, including the grey literature. Protocol was registered in PROSPERO (CRD 42020189349). The PECO strategy was used to define the eligibility criteria and only studies involving diagnostic accuracy were included. Their risk of bias was investigated using the Joanna Briggs Institute Critical Appraisal tool. Out of 437 identified citations, five papers, published between 2006 and 2019, fulfilled the criteria and were included in this systematic review. A total of 5,264 images from 508 lesions, classified as radicular cyst, odontogenic keratocyst, lateral periodontal cyst, glandular odontogenic cyst, or dentigerous cyst, were analyzed. All selected articles scored low risk of bias. In three studies, the best performances were achieved when the two subtypes of odontogenic keratocysts (solitary or syndromic) were pooled together, the case-wise analysis showing a success rate of 100% for odontogenic keratocysts and radicular cysts, in one of them. In two studies, the dentigerous cyst was associated with the majority of misclassifications, and its omission from the dataset improved significantly the classification rates. The overall evaluation showed all studies presented high accuracy rates of computer-aided systems in classifying odontogenic cysts in digital images of histological tissue sections. However, due to the heterogeneity of the studies, a meta-analysis evaluating the outcomes of interest was not performed and a pragmatic recommendation about their use is not possible

    Confocal Laser Endomicroscopy Image Analysis with Deep Convolutional Neural Networks

    Get PDF
    abstract: Rapid intraoperative diagnosis of brain tumors is of great importance for planning treatment and guiding the surgeon about the extent of resection. Currently, the standard for the preliminary intraoperative tissue analysis is frozen section biopsy that has major limitations such as tissue freezing and cutting artifacts, sampling errors, lack of immediate interaction between the pathologist and the surgeon, and time consuming. Handheld, portable confocal laser endomicroscopy (CLE) is being explored in neurosurgery for its ability to image histopathological features of tissue at cellular resolution in real time during brain tumor surgery. Over the course of examination of the surgical tumor resection, hundreds to thousands of images may be collected. The high number of images requires significant time and storage load for subsequent reviewing, which motivated several research groups to employ deep convolutional neural networks (DCNNs) to improve its utility during surgery. DCNNs have proven to be useful in natural and medical image analysis tasks such as classification, object detection, and image segmentation. This thesis proposes using DCNNs for analyzing CLE images of brain tumors. Particularly, it explores the practicality of DCNNs in three main tasks. First, off-the shelf DCNNs were used to classify images into diagnostic and non-diagnostic. Further experiments showed that both ensemble modeling and transfer learning improved the classifier’s accuracy in evaluating the diagnostic quality of new images at test stage. Second, a weakly-supervised learning pipeline was developed for localizing key features of diagnostic CLE images from gliomas. Third, image style transfer was used to improve the diagnostic quality of CLE images from glioma tumors by transforming the histology patterns in CLE images of fluorescein sodium-stained tissue into the ones in conventional hematoxylin and eosin-stained tissue slides. These studies suggest that DCNNs are opted for analysis of CLE images. They may assist surgeons in sorting out the non-diagnostic images, highlighting the key regions and enhancing their appearance through pattern transformation in real time. With recent advances in deep learning such as generative adversarial networks and semi-supervised learning, new research directions need to be followed to discover more promises of DCNNs in CLE image analysis.Dissertation/ThesisDoctoral Dissertation Neuroscience 201

    Representación de imágenes de histopatología utilizada en tareas de análisis automático: estado del arte

    Get PDF
    This paper presents a review of the state-of-the-art in histopathology image representation used in automatic image analysis tasks. Automatic analysis of histopathology images is important for building computer-assisted diagnosis tools, automatic image enhancing systems and virtual microscopy systems, among other applications. Histopathology images have a rich mix of visual patterns with particularities that make them difficult to analyze. The paper discusses these particularities, the acquisition process and the challenges found when doing automatic analysis. Second an overview of recent works and methods addressed to deal with visual content representation in different automatic image analysis tasks is presented. Third an overview of applications of image representation methods in several medical domains and tasks is presented. Finally, the paper concludes with current trends of automatic analysis of histopathology images like digital pathology
    • …
    corecore