551,537 research outputs found

    Factors Influencing the Statistical Power of Complex Data Analysis Protocols for Molecular Signature Development from Microarray Data

    Get PDF
    Critical to the development of molecular signatures from microarray and other high-throughput data is testing the statistical significance of the produced signature in order to ensure its statistical reproducibility. While current best practices emphasize sufficiently powered univariate tests of differential expression, little is known about the factors that affect the statistical power of complex multivariate analysis protocols for high-dimensional molecular signature development.We show that choices of specific components of the analysis (i.e., error metric, classifier, error estimator and event balancing) have large and compounding effects on statistical power. The effects are demonstrated empirically by an analysis of 7 of the largest microarray cancer outcome prediction datasets and supplementary simulations, and by contrasting them to prior analyses of the same data.THE FINDINGS OF THE PRESENT STUDY HAVE TWO IMPORTANT PRACTICAL IMPLICATIONS: First, high-throughput studies by avoiding under-powered data analysis protocols, can achieve substantial economies in sample required to demonstrate statistical significance of predictive signal. Factors that affect power are identified and studied. Much less sample than previously thought may be sufficient for exploratory studies as long as these factors are taken into consideration when designing and executing the analysis. Second, previous highly-cited claims that microarray assays may not be able to predict disease outcomes better than chance are shown by our experiments to be due to under-powered data analysis combined with inappropriate statistical tests

    Beyond the hypothesis of boundedness for the random coefficient of Airy, Hermite and Laguerre differential equations with uncertainties

    Full text link
    [EN] In this work, we study the full randomized versions of Airy, Hermite and Laguerre differential equations, which depend on a random variable appearing as an equation coefficient as well as two random initial conditions. In previous contributions, the mean square stochastic solutions to the aforementioned random differential equations were constructed via the Frobenius method, under the assumption of exponential growth of the absolute moments of the equation coefficient, which is equivalent to its essential boundedness. In this paper we aim at relaxing the boundedness hypothesis to allow more general probability distributions for the equation coefficient. We prove that the equations are solvable in the mean square sense when the equation coefficient has finite moment-generating function in a neighborhood of the origin. A thorough discussion of the new hypotheses is included.This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P.Calatayud Gregori, J.; Cortés, J.; Jornet Sanz, M. (2020). Beyond the hypothesis of boundedness for the random coefficient of Airy, Hermite and Laguerre differential equations with uncertainties. Stochastic Analysis and Applications. 38(5):875-885. https://doi.org/10.1080/07362994.2020.1733017S875885385Neckel, T., & Rupp, F. (2013). Random Differential Equations in Scientific Computing. doi:10.2478/9788376560267Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061Cortés, J.-C., Jódar, L., Camacho, F., & Villafuerte, L. (2010). Random Airy type differential equations: Mean square exact and numerical solutions. Computers & Mathematics with Applications, 60(5), 1237-1244. doi:10.1016/j.camwa.2010.05.046Calbo, G., Cortés, J.-C., & Jódar, L. (2011). Random Hermite differential equations: Mean square power series solutions and statistical properties. Applied Mathematics and Computation, 218(7), 3654-3666. doi:10.1016/j.amc.2011.09.008Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Improving the Approximation of the First- and Second-Order Statistics of the Response Stochastic Process to the Random Legendre Differential Equation. Mediterranean Journal of Mathematics, 16(3). doi:10.1007/s00009-019-1338-6Calatayud, J., Cortés, J.-C., Jornet, M., & Villafuerte, L. (2018). Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1848-8Gregori, J., López, J., & Sanz, M. (2018). Some Notes to Extend the Study on Random Non-Autonomous Second Order Linear Differential Equations Appearing in Mathematical Modeling. Mathematical and Computational Applications, 23(4), 76. doi:10.3390/mca23040076Calbo, G., Cortés, J.-C., & Jódar, L. (2010). Mean square power series solution of random linear differential equations. Computers & Mathematics with Applications, 59(1), 559-572. doi:10.1016/j.camwa.2009.06.007Calbo, G., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2010). Analytic stochastic process solutions of second-order random differential equations. Applied Mathematics Letters, 23(12), 1421-1424. doi:10.1016/j.aml.2010.07.011CALBO SANJUÁN, G. (s. f.). Mean Square Analytic Solutions of Random Linear Models. doi:10.4995/thesis/10251/8721Jagadeesan, M. (2017). Simple analysis of sparse, sign-consistent JL. arXiv:1708.02966.Lin, G. D. (2017). Recent developments on the moment problem. Journal of Statistical Distributions and Applications, 4(1). doi:10.1186/s40488-017-0059-2Ernst, O. G., Mugler, A., Starkloff, H.-J., & Ullmann, E. (2011). On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2), 317-339. doi:10.1051/m2an/2011045Calbo, G., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2011). Solving the random Legendre differential equation: Mean square power series solution and its statistical functions. Computers & Mathematics with Applications, 61(9), 2782-2792. doi:10.1016/j.camwa.2011.03.04

    A mean square chain rule and its application in solving the random Chebyshev differential equation

    Full text link
    [EN] In this paper a new version of the chain rule for calculat- ing the mean square derivative of a second-order stochastic process is proven. This random operational calculus rule is applied to construct a rigorous mean square solution of the random Chebyshev differential equation (r.C.d.e.) assuming mild moment hypotheses on the random variables that appear as coefficients and initial conditions of the cor- responding initial value problem. Such solution is represented through a mean square random power series. Moreover, reliable approximations for the mean and standard deviation functions to the solution stochastic process of the r.C.d.e. are given. Several examples, that illustrate the theoretical results, are included.This work was completed with the support of our TEX-pert.Cortés, J.; Villafuerte, L.; Burgos-Simon, C. (2017). A mean square chain rule and its application in solving the random Chebyshev differential equation. Mediterranean Journal of Mathematics. 14(1):14-35. https://doi.org/10.1007/s00009-017-0853-6S1435141Calbo, G., Cortés, J.C., Jódar, L., Villafuerte, L.: Analytic stochastic process solutions of second-order random differential equations. Appl. Math. Lett. 23(12), 1421–1424 (2010). doi: 10.1016/j.aml.2010.07.011El-Tawil, M.A., El-Sohaly, M.: Mean square numerical methods for initial value random differential equations. Open J. Discret. Math. 1(1), 164–171 (2011). doi: 10.4236/ojdm.2011.12009Khodabin, M., Maleknejad, K., Rostami, K., Nouri, M.: Numerical solution of stochastic differential equations by second order Runge Kutta methods. Math. Comp. Model. 59(9–10), 1910–1920 (2010). doi: 10.1016/j.mcm.2011.01.018Santos, L.T., Dorini, F.A., Cunha, M.C.C.: The probability density function to the random linear transport equation. Appl. Math. Comput. 216(5), 1524–1530 (2010). doi: 10.1016/j.amc.2010.03.001González Parra, G., Chen-Charpentier, B.M., Arenas, A.J.: Polynomial Chaos for random fractional order differential equations. Appl. Math. Comput. 226(1), 123–130 (2014). doi: 10.1016/j.amc.2013.10.51El-Beltagy, M.A., El-Tawil, M.A.: Toward a solution of a class of non-linear stochastic perturbed PDEs using automated WHEP algorithm. Appl. Math. Model. 37(12–13), 7174–7192 (2013). doi: 10.1016/j.apm.2013.01.038Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterran. J. Math. 12(3), 1123–1140 (2015). doi: 10.1007/s00009-014-0452-8Villafuerte, L., Braumann, C.A., Cortés, J.C., Jódar, L.: Random differential operational calculus: theory and applications. Comp. Math. Appl. 59(1), 115–125 (2010). doi: 10.1016/j.camwa.2009.08.061Øksendal, B.: Stochastic differential equations: an introduction with applications, 6th edn. Springer, Berlin (2007)Soong, T.T.: Random differential equations in science and engineering. Academic Press, New York (1973)Wong, B., Hajek, B.: Stochastic processes in engineering systems. Springer Verlag, New York (1985)Arnold, L.: Stochastic differential equations. Theory and applications. John Wiley, New York (1974)Cortés, J.C., Jódar, L., Camacho, J., Villafuerte, L.: Random Airy type differential equations: mean square exact and numerical solutions. Comput. Math. Appl. 60(5), 1237–1244 (2010). doi: 10.1016/j.camwa.2010.05.046Calbo, G., Cortés, J.C., Jódar, L.: Random Hermite differential equations: mean square power series solutions and statistical properties. Appl. Math. Comp. 218(7), 3654–3666 (2011). doi: 10.1016/j.amc.2011.09.008Calbo, G., Cortés, J.C., Jódar, L., Villafuerte, L.: Solving the random Legendre differential equation: Mean square power series solution and its statistical functions. Comp. Math. Appl. 61(9), 2782–2792 (2010). doi: 10.1016/j.camwa.2011.03.045Cortés, J.C., Jódar, L., Company, R., Villafuerte, L.: Laguerre random polynomials: definition, differential and statistical properties. Utilit. Math. 98, 283–293 (2015)Cortés, J.C., Jódar, L., Villafuerte, L.: Mean square solution of Bessel differential equation with uncertainties. J. Comp. Appl. Math. 309, 383–395 (2017). doi: 10.1016/j.cam.2016.01.034Golmankhaneh, A.K., Porghoveh, N.A., Baleanu, D.: Mean square solutions of second-order random differential equations by using homotopy analysis method. Romanian Reports Physics 65(2), 1237–1244 (2013)Khalaf, S.L.: Mean square solutions of second-order random differential equations by using homotopy perturbation method. Int. Math. Forum 6(48), 2361–2370 (2011)Khudair, A.R., Ameen, A.A., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using Adomian decomposition method. Appl. Math. Sci. 5(49), 2521–2535 (2011)Agarwal, R.P., O’Regan, D.: Ordinary and partial differential equations. Springer, New York (2009

    Improving the approximation of the first and second order statistics of the response stochastic process to the random Legendre differential equation

    Full text link
    [EN] In this paper, we deal with uncertainty quantification for the random Legendre differential equation, with input coefficient A and initial conditions X-0 and X-1. In a previous study (Calbo et al. in Comput Math Appl 61(9):2782-2792, 2011), a mean square convergent power series solution on (-1/e, 1/e) was constructed, under the assumptions of mean fourth integrability of X-0 and X-1, independence, and at most exponential growth of the absolute moments of A. In this paper, we relax these conditions to construct an L-p solution (1 <= p <= infinity) to the random Legendre differential equation on the whole domain (-1, 1), as in its deterministic counterpart. Our hypotheses assume no independence and less integrability of X-0 and X-1. Moreover, the growth condition on the moments of A is characterized by the boundedness of A, which simplifies the proofs significantly. We also provide approximations of the expectation and variance of the response process. The numerical experiments show the wide applicability of our findings. A comparison with Monte Carlo simulations and gPC expansions is performed.This work has been supported by the Spanish Ministerio de Economia y Competitividad Grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia.Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Improving the approximation of the first and second order statistics of the response stochastic process to the random Legendre differential equation. Mediterranean Journal of Mathematics. 16(3):1-14. https://doi.org/10.1007/s00009-019-1338-6S114163Soong, T.T.: Random Differential Equations in Science and Engineering. Academic Press, New York (1973)Strand, J.L.: Random ordinary differential equations. J. Differ. Equ. 7(3), 538–553 (1970)Smith, R.C.: Uncertainty quantification. Theory, implementation, and application. SIAM Comput. Sci. Eng. New York (2013) ISBN 9781611973211Fishman, G.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, Berlin (2013)Cortés, J.-C., Romero, J.-V., Roselló, M.-D., Santonja, F.-J., Villanueva, R.-J.: Solving continuous models with dependent uncertainty: a computational approach. Abstr. Appl. Anal. 2013, 983839 (2013). https://doi.org/10.1155/2013/983839Xiu, D.: Numerical Methods for Stochastic Computations. A Spectral Method Approach. Cambridge Texts in Applied Mathematics. Princeton University Press, New York (2010)El-Tawil, M.A.: The approximate solutions of some stochastic differential equations using transformations. Appl. Math. Comput. 164(1), 167–178 (2005)Cortés, J.-C., Sevilla-Peris, P., Jódar, L.: Constructing approximate diffusion processes with uncertain data. Math. Comput. Simul. 73(1–4), 125–132 (2006)Cortés, J.-C., Jódar, L., Villafuerte, L., Villanueva, R.-J.: Computing mean square approximations of random diffusion models with source term. Math. Comput. Simul. 76(1–3), 44–48 (2007)Khodabin, M., Maleknejad, K., Rostami, M., Nouri, M.: Numerical solution of stochastic differential equations by second order Runge–Kutta methods. Math. Comput. Model. 53(9–10), 1910–1920 (2011)Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterran. J. Math. 12(3), 1123–1140 (2015)Nouri, N.: Study on stochastic differential equations via modified Adomian decomposition method. U.P.B. Sci. Bull. Ser. A 78(1), 81–90 (2016)Khodabin, M., Rostami, M.: Mean square numerical solution of stochastic differential equations by fourth order Runge–Kutta method and its application in the electric circuits with noise. Adv. Differ. Equ. 623, 1–19 (2015)Díaz-Infante, S., Jerez, S.: Convergence and asymptotic stability of the explicit Steklov method for stochastic differential equations. J. Comput. Appl. Math. 291(1), 36–47 (2016)Soheili, Ali R, Toutounian, F., Soleymani, F.: A fast convergent numerical method for matrix sign function with application in SDEs (Stochastic Differential Equations). J. Comput. Appl. Math. 282, 167–178 (2015)Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (2003)Villafuerte, L., Braumann, C.A., Cortés, J.-C., Jódar, L.: Random differential operational calculus: theory and applications. Comput. Math. Appl. 59(1), 115–125 (2010)Licea, J., Villafuerte, L., Chen-Charpentier, B.M.: Analytic and numerical solutions of a Riccati differential equation with random coefficients. J. Comput. Appl. Math. 309(1), 208–219 (2013)Cortés, J.-C., Jódar, L., Camacho, J., Villafuerte, L.: Random Airy type differential equations: mean square exact and numerical solutions. Comput. Math. Appl. 60(5), 1237–1244 (2010)Calbo, G., Cortés, J.-C., Jódar, L.: Random Hermite differential equations: mean square power series solutions and statistical properties. Appl. Math. Comput. 218(7), 3654–3666 (2011)Calbo, G., Cortés, J.-C., Jódar, L., Villafuerte, L.: Solving the random Legendre differential equation: mean square power series solution and its statistical functions. Comput. Math. Appl. 61(9), 2782–2792 (2011)Cortés, J.C., Jódar, L., Villafuerte, L.: Mean square solution of Bessel differential equation with uncertainties. J. Comput. Appl. Math. 309(1), 383–395 (2017)Golmankhaneh, A.K., Porghoveh, N.A., Baleanu, D.: Mean square solutions of second-order random differential equations by using homotopy analysis method. Roman. Rep. Phys. 65(2), 350–362 (2013)Khudair, A.K., Ameen, A.A., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using Adomian decomposition method. Appl. Math. Sci. 51(5), 2521–2535 (2011)Khudair, A.K., Haddad, S.A.M., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using the differential transformation method. Open J. Appl. Sci. 6, 287–297 (2016)Norman, L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 1. Wiley, Oxford (1994)Ernst, O.G., Mugler, A., Starkloff, H.-J., Ullmann, E.: On the convergence of generalized polynomial chaos expansions. ESAIM Math. Modell. Num. Anal. 46(2), 317–339 (2012)Shi, W., Zhang, C.: Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations. Appl. Num. Math. 62(12), 1954–1964 (2012)Calatayud, J., Cortés, J.-C., Jornet, M.: On the convergence of adaptive gPC for non-linear random difference equations: theoretical analysis and some practical recommendations. J. Nonlinear Sci. Appl. 11(9), 1077–1084 (2018

    Solving second-order linear differential equations with random analytic coefficients about regular-singular points

    Full text link
    [EN] In this contribution, we construct approximations for the density associated with the solution of second-order linear differential equations whose coefficients are analytic stochastic processes about regular-singular points. Our analysis is based on the combination of a random Fröbenius technique together with the random variable transformation technique assuming mild probabilistic conditions on the initial conditions and coefficients. The new results complete the ones recently established by the authors for the same class of stochastic differential equations, but about regular points. In this way, this new contribution allows us to study, for example, the important randomized Bessel differential equation.This work was partially funded by the Ministerio de Economia y Competitividad Grant MTM2017-89664-P. Ana Navarro Quiles acknowledges the funding received from Generalitat Valenciana through a postdoctoral contract (APOSTD/2019/128). Computations were carried out thanks to the collaboration of Raul San Julian Garces and Elena Lopez Navarro granted by the European Union through the Operational Program of the European Regional Development Fund (ERDF)/European Social Fund (ESF) of the Valencian Community 2014-2020, Grants GJIDI/2018/A/009 and GJIDI/2018/A/010, respectivelyCortés, J.; Navarro-Quiles, A.; Romero, J.; Roselló, M. (2020). Solving second-order linear differential equations with random analytic coefficients about regular-singular points. Mathematics. 8(2):1-20. https://doi.org/10.3390/math8020230S12082Hussein, A., & Selim, M. M. (2012). Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Applied Mathematics and Computation, 218(13), 7193-7203. doi:10.1016/j.amc.2011.12.088Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009Santos, L. T., Dorini, F. A., & Cunha, M. C. C. (2010). The probability density function to the random linear transport equation. Applied Mathematics and Computation, 216(5), 1524-1530. doi:10.1016/j.amc.2010.03.001Hussein, A., & Selim, M. M. (2019). A complete probabilistic solution for a stochastic Milne problem of radiative transfer using KLE-RVT technique. Journal of Quantitative Spectroscopy and Radiative Transfer, 232, 54-65. doi:10.1016/j.jqsrt.2019.04.034Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2018). Solving second-order linear differential equations with random analytic coefficients about ordinary points: A full probabilistic solution by the first probability density function. Applied Mathematics and Computation, 331, 33-45. doi:10.1016/j.amc.2018.02.051Cortés, J.-C., Jódar, L., Camacho, F., & Villafuerte, L. (2010). Random Airy type differential equations: Mean square exact and numerical solutions. Computers & Mathematics with Applications, 60(5), 1237-1244. doi:10.1016/j.camwa.2010.05.046Calbo, G., Cortés, J.-C., & Jódar, L. (2011). Random Hermite differential equations: Mean square power series solutions and statistical properties. Applied Mathematics and Computation, 218(7), 3654-3666. doi:10.1016/j.amc.2011.09.008Calbo, G., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2011). Solving the random Legendre differential equation: Mean square power series solution and its statistical functions. Computers & Mathematics with Applications, 61(9), 2782-2792. doi:10.1016/j.camwa.2011.03.045Cortés, J.-C., Villafuerte, L., & Burgos, C. (2017). A Mean Square Chain Rule and its Application in Solving the Random Chebyshev Differential Equation. Mediterranean Journal of Mathematics, 14(1). doi:10.1007/s00009-017-0853-6Cortés, J.-C., Jódar, L., & Villafuerte, L. (2017). Mean square solution of Bessel differential equation with uncertainties. Journal of Computational and Applied Mathematics, 309, 383-395. doi:10.1016/j.cam.2016.01.034Khudair, A. R., Haddad, S. A. M., & Khalaf, S. L. (2016). Mean Square Solutions of Second-Order Random Differential Equations by Using the Differential Transformation Method. Open Journal of Applied Sciences, 06(04), 287-297. doi:10.4236/ojapps.2016.64028Qi, Y. (2018). A Very Brief Introduction to Nonnegative Tensors from the Geometric Viewpoint. Mathematics, 6(11), 230. doi:10.3390/math6110230Ragusa, M. A., & Tachikawa, A. (2016). Boundary regularity of minimizers of p(x)-energy functionals. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 33(2), 451-476. doi:10.1016/j.anihpc.2014.11.003Ragusa, M. A., & Tachikawa, A. (2019). Regularity for minimizers for functionals of double phase with variable exponents. Advances in Nonlinear Analysis, 9(1), 710-728. doi:10.1515/anona-2020-0022Braumann, C. A., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2018). On the random gamma function: Theory and computing. Journal of Computational and Applied Mathematics, 335, 142-155. doi:10.1016/j.cam.2017.11.04

    Provably Secure Countermeasures against Side-channel Attacks

    Get PDF
    Side-channel attacks exploit the fact that the implementations of cryptographic algorithms leak information about the secret key. In power analysis attacks, the observable leakage is the power consumption of the device, which is dependent on the processed data and the performed operations.\ignore{While Simple Power Analysis (SPA) attacks try to recover the secret value by directly interpreting the power measurements with the corresponding operations, Differential Power Analysis (DPA) attacks are more sophisticated and aim to recover the secret value by applying statistical techniques on multiple measurements from the same operation.} Masking is a widely used countermeasure to thwart the powerful Differential Power Analysis (DPA) attacks. It uses random variables called masks to reduce the correlation between the secret key and the obtained leakage. The advantage with masking countermeasure is that one can formally prove its security under reasonable assumptions on the device leakage model. This thesis proposes several new masking schemes along with the analysis and improvement of few existing masking schemes. The first part of the thesis addresses the problem of converting between Boolean and arithmetic masking. To protect a cryptographic algorithm which contains a mixture of Boolean and arithmetic operations, one uses both Boolean and arithmetic masking. Consequently, these masks need to be converted between the two forms based on the sequence of operations. The existing conversion schemes are secure against first-order DPA attacks only. This thesis proposes first solution to switch between Boolean and arithmetic masking that is secure against attacks of any order. Secondly, new solutions are proposed for first-order secure conversion with logarithmic complexity (O(logk){\cal O}(\log k) for kk-bit operands) compared to the existing solutions with linear complexity (O(k){\cal O}(k)). It is shown that this new technique also improves the complexity of the higher-order conversion algorithms from O(n2k){\cal O}(n^2 k) to O(n2logk){\cal O}(n^2 \log k) secure against attacks of order dd, where n=2d+1n = 2d+1. Thirdly, for the special case of second-order masking, the running times of the algorithms are further improved by employing lookup tables. The second part of the thesis analyzes the security of two existing Boolean masking schemes. Firstly, it is shown that a higher-order masking scheme claimed to be secure against attacks of order dd can be broken with an attack of order d/2+1d/2+1. An improved scheme is proposed to fix the flaw. Secondly, a new issue concerning the problem of converting the security proofs from one leakage model to another is examined. It is shown that a second-order masking scheme secure in the Hamming weight model can be broken with a first-order attack on a device leaking in the Hamming distance model. This result underlines the importance of re-evaluating the security proofs for devices leaking in different models

    Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties

    Get PDF
    [EN] In this paper we study random non-autonomous second order linear differential equations by taking advantage of the powerful theory of random difference equations. The coefficients are assumed to be stochastic processes, and the initial conditions are random variables both defined in a common underlying complete probability space. Under appropriate assumptions established on the data stochastic processes and on the random initial conditions, and using key results on difference equations, we prove the existence of an analytic stochastic process solution in the random mean square sense. Truncating the random series that defines the solution process, we are able to approximate the main statistical properties of the solution, such as the expectation and the variance. We also obtain error a priori bounds to construct reliable approximations of both statistical moments. We include a set of numerical examples to illustrate the main theoretical results established throughout the paper. We finish with an example where our findings are combined with Monte Carlo simulations to model uncertainty using real data.This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia.Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M.; Villafuerte, L. (2018). Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Advances in Difference Equations. (3):1-29. https://doi.org/10.1186/s13662-018-1848-8S1293Apostol, T.M.: Mathematical Analysis, 2nd edn. Pearson, New York (1976)Boyce, W.E.: Probabilistic Methods in Applied Mathematics I. Academic Press, New York (1968)Calbo, G., Cortés, J.C., Jódar, L.: Random Hermite differential equations: mean square power series solutions and statistical properties. Appl. Math. Comput. 218(7), 3654–3666 (2011)Calbo, G., Cortés, J.C., Jódar, L., Villafuerte, L.: Solving the random Legendre differential equation: mean square power series solution and its statistical functions. Comput. Math. Appl. 61(9), 2782–2792 (2011)Casabán, M.C., Cortés, J.C., Navarro-Quiles, A., Romero, J.V., Roselló, M.D., Villanueva, R.J.: Computing probabilistic solutions of the Bernoulli random differential equation. J. Comput. Appl. Math. 309, 396–407 (2017)Casabán, M.C., Cortés, J.C., Romero, J.V., Roselló, M.D.: Solving random homogeneous linear second-order differential equations: a full probabilistic description. Mediterr. J. Math. 13(6), 3817–3836 (2016)Cortés, J.C., Jódar, L., Camacho, J., Villafuerte, L.: Random Airy type differential equations: mean square exact and numerical solutions. Comput. Math. Appl. 60(5), 1237–1244 (2010)Cortés, J.C., Jódar, L., Company, R., Villafuerte, L.: Laguerre random polynomials: definition, differential and statistical properties. Util. Math. 98, 283–295 (2015)Cortés, J.C., Jódar, L., Villafuerte, L.: Random linear-quadratic mathematical models: computing explicit solutions and applications. Math. Comput. Simul. 79(7), 2076–2090 (2009)Cortés, J.C., Jódar, L., Villafuerte, L.: Mean square solution of Bessel differential equation with uncertainties. J. Comput. Appl. Math. 309(1), 383–395 (2017)Cortés, J.C., Sevilla-Peris, P., Jódar, L.: Analytic-numerical approximating processes of diffusion equation with data uncertainty. Comput. Math. Appl. 49(7–8), 1255–1266 (2005)Díaz-Infante, S., Jerez, S.: Convergence and asymptotic stability of the explicit Steklov method for stochastic differential equations. J. Comput. Appl. Math. 291(1), 36–47 (2016)Dorini, F., Cunha, M.: Statistical moments of the random linear transport equation. J. Comput. Phys. 227(19), 8541–8550 (2008)Dorini, F.A., Cecconello, M.S., Dorini, M.B.: On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Commun. Nonlinear Sci. Numer. Simul. 33, 160–173 (2016)Golmankhaneh, A.K., Porghoveh, N.A., Baleanu, D.: Mean square solutions of second-order random differential equations by using homotopy analysis method. Rom. Rep. Phys. 65(2), 350–362 (2013)Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes. Clarendon Press, Oxford (2000)Henderson, D., Plaschko, P.: Stochastic Differential Equations in Science and Engineering. Cambridge Texts in Applied Mathematics. World Scientific, Singapore (2006)Hussein, A., Selim, M.M.: A developed solution of the stochastic Milne problem using probabilistic transformations. Appl. Math. Comput. 216(10), 2910–2919 (2009)Hussein, A., Selim, M.M.: Solution of the stochastic transport equation of neutral particles with anisotropic scattering using RVT technique. Appl. Math. Comput. 213(1), 250–261 (2009)Hussein, A., Selim, M.M.: Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Appl. Math. Comput. 218(13), 7193–7203 (2012)Khodabin, M., Maleknejad, K., Rostami, M., Nouri, M.: Numerical solution of stochastic differential equations by second order Runge–Kutta methods. Math. Comput. Model. 53(9–10), 1910–1920 (2011)Khodabin, M., Rostami, M.: Mean square numerical solution of stochastic differential equations by fourth order Runge–Kutta method and its application in the electric circuits with noise. Adv. Differ. Equ. 2015, 62 (2015)Khudair, A.K., Ameen, A.A., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using Adomian decomposition method. Appl. Math. Sci. 51(5), 2521–2535 (2011)Khudair, A.K., Haddad, S.A.M., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using the differential transformation method. Open J. Appl. Sci. 6, 287–297 (2016)Lesaffre, E., Lawson, A.B.: Bayesian Biostatistics. Statistics in Practice. Wiley, New York (2012)Li, X., Fu, X.: Stability analysis of stochastic functional differential equations with infinite delay and its application to recurrent neural networks. J. Comput. Appl. Math. 234(2), 407–417 (2010)Licea, J.A., Villafuerte, L., Chen-Charpentier, B.M.: Analytic and numerical solutions of a Riccati differential equation with random coefficients. J. Comput. Appl. Math. 309(1), 208–219 (2013)Liu, S., Debbouche, A., Wang, J.: On the iterative learning control for stochastic impulsive differential equations with randomly varying trial lengths. J. Comput. Appl. Math. 312, 47–57 (2017)Loève, M.: Probability Theory. Vol. I. Springer, Mineola (1977)Lord, G.J., Powell, C.E., Shardlow, T.: An Introduction to Computational Stochastic PDEs. Cambridge Texts in Applied Mathematics. Dover, New York (2014)Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterr. J. Math. 12(3), 1123–1140 (2015)Rencher, A.C., Schaalje, G.B.: Linear Models in Statistics, 2nd edn. Wiley, New York (2008)Santos, L.T., Dorini, F.A., Cunha, M.C.C.: The probability density function to the random linear transport equation. Appl. Math. Comput. 216(5), 1524–1530 (2010)Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Cambridge Texts in Applied Mathematics. Wiley, New York (2003)Smith, R.C.: Uncertainty Quantification: Theory, Implementation, and Applications. SIAM, Philadelphia (2014)Soheili, A.R., Toutounian, F., Soleymani, F.: A fast convergent numerical method for matrix sign function with application in SDEs (Stochastic Differential Equations). J. Comput. Appl. Math. 282, 167–178 (2015)Soong, T.T.: Random Differential Equations in Science and Engineering. Academic Press, New York (1973)Villafuerte, L., Braumann, C.A., Cortés, J.C., Jódar, L.: Random differential operational calculus: theory and applications. Comput. Math. Appl. 59(1), 115–125 (2010)Xiu, D.: Numerical Methods for Stochastic Computations. A Spectral Method Approach. Cambridge Texts in Applied Mathematics. Princeton University Press, New York (2010

    Stability Assessment of Stochastic Differential-Algebraic Systems via Lyapunov Exponents with an Application to Power Systems

    Get PDF
    [EN] In this paper, we discuss stochastic differential-algebraic equations (SDAEs) and the asymptotic stability assessment for such systems via Lyapunov exponents (LEs). We focus on index-1 SDAEs and their reformulation as ordinary stochastic differential equations (SDEs). Via ergodic theory, it is then feasible to analyze the LEs via the random dynamical system generated by the underlying SDEs. Once the existence of well-defined LEs is guaranteed, we proceed to the use of numerical simulation techniques to determine the LEs numerically. Discrete and continuous QR decomposition-based numerical methods are implemented to compute the fundamental solution matrix and to use it in the computation of the LEs. Important computational features of both methods are illustrated via numerical tests. Finally, the methods are applied to two applications from power systems engineering, including the single-machine infinite-bus (SMIB) power system model.A.G.-Z. was supported by Secretaria Nacional de Ciencia y Tecnologia SENESCYT (Ecuador), through the scholarship "Becas de Fomento al Talento Humano", and Deutsche Forschungsgemeinschaft through Collaborative Research Centre Transregio. SFB TRR 154. P.F.-d.-C. was partially supported by grant no. RTI2018-102256-B-I00 (Spain). J.-C.C. acknowledges the support by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI), and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P. V.M. was partially supported by Deutsche Forschungsgemeinschaft through the Excellence Cluster Math+ in Berlin, and Priority Program 1984 "Hybride und multimodale Energiesysteme: Systemtheoretische Methoden fur die Transformation und den Betrieb komplexer Netze".González-Zumba, A.; Fernández De Córdoba, P.; Cortés, J.; Mehrmann, V. (2020). Stability Assessment of Stochastic Differential-Algebraic Systems via Lyapunov Exponents with an Application to Power Systems. Mathematics. 8(9):1-26. https://doi.org/10.3390/math8091393S12689Schein, O., & Denk, G. (1998). Numerical solution of stochastic differential-algebraic equations with applications to transient noise simulation of microelectronic circuits. Journal of Computational and Applied Mathematics, 100(1), 77-92. doi:10.1016/s0377-0427(98)00138-1Winkler, R. (2004). Stochastic differential algebraic equations of index 1 and applications in circuit simulation. Journal of Computational and Applied Mathematics, 163(2), 435-463. doi:10.1016/j.cam.2003.12.017CONG, N. D., & THE, N. T. (2012). LYAPUNOV SPECTRUM OF NONAUTONOMOUS LINEAR STOCHASTIC DIFFERENTIAL ALGEBRAIC EQUATIONS OF INDEX-1. Stochastics and Dynamics, 12(04), 1250002. doi:10.1142/s0219493712500025Küpper, D., Kværnø, A., & Rößler, A. (2011). A Runge-Kutta method for index 1 stochastic differential-algebraic equations with scalar noise. BIT Numerical Mathematics, 52(2), 437-455. doi:10.1007/s10543-011-0354-0Benettin, G., Galgani, L., Giorgilli, A., & Strelcyn, J.-M. (1980). Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory. Meccanica, 15(1), 9-20. doi:10.1007/bf02128236Benettin, G., Galgani, L., Giorgilli, A., & Strelcyn, J.-M. (1980). Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application. Meccanica, 15(1), 21-30. doi:10.1007/bf02128237Dieci, L., & Van Vleck, E. S. (2002). Lyapunov Spectral Intervals: Theory and Computation. SIAM Journal on Numerical Analysis, 40(2), 516-542. doi:10.1137/s0036142901392304Dieci, L., & Van Vleck, E. S. (2006). Lyapunov and Sacker–Sell Spectral Intervals. Journal of Dynamics and Differential Equations, 19(2), 265-293. doi:10.1007/s10884-006-9030-5Linh, V. H., & Mehrmann, V. (2009). Lyapunov, Bohl and Sacker-Sell Spectral Intervals for Differential-Algebraic Equations. Journal of Dynamics and Differential Equations, 21(1), 153-194. doi:10.1007/s10884-009-9128-7Linh, V. H., Mehrmann, V., & Van Vleck, E. S. (2010). QR methods and error analysis for computing Lyapunov and Sacker–Sell spectral intervals for linear differential-algebraic equations. Advances in Computational Mathematics, 35(2-4), 281-322. doi:10.1007/s10444-010-9156-1Dieci, L., Russell, R. D., & Van Vleck, E. S. (1997). On the Compuation of Lyapunov Exponents for Continuous Dynamical Systems. SIAM Journal on Numerical Analysis, 34(1), 402-423. doi:10.1137/s0036142993247311Talay, D. (1990). Second-order discretization schemes of stochastic differential systems for the computation of the invariant law. Stochastics and Stochastic Reports, 29(1), 13-36. doi:10.1080/17442509008833606Dieci, L., Russell, R. D., & Van Vleck, E. S. (1994). Unitary Integrators and Applications to Continuous Orthonormalization Techniques. SIAM Journal on Numerical Analysis, 31(1), 261-281. doi:10.1137/0731014YU. RYAGIN, M., & RYASHKO, L. B. (2004). THE ANALYSIS OF THE STOCHASTICALLY FORCED PERIODIC ATTRACTORS FOR CHUA’S CIRCUIT. International Journal of Bifurcation and Chaos, 14(11), 3981-3987. doi:10.1142/s0218127404011600Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. (2004). IEEE Transactions on Power Systems, 19(3), 1387-1401. doi:10.1109/tpwrs.2004.825981Verdejo, H., Vargas, L., & Kliemann, W. (2012). Stability of linear stochastic systems via Lyapunov exponents and applications to power systems. Applied Mathematics and Computation, 218(22), 11021-11032. doi:10.1016/j.amc.2012.04.063Verdejo, H., Escudero, W., Kliemann, W., Awerkin, A., Becker, C., & Vargas, L. (2016). Impact of wind power generation on a large scale power system using stochastic linear stability. Applied Mathematical Modelling, 40(17-18), 7977-7987. doi:10.1016/j.apm.2016.04.020Wadduwage, D. P., Wu, C. Q., & Annakkage, U. D. (2013). Power system transient stability analysis via the concept of Lyapunov Exponents. Electric Power Systems Research, 104, 183-192. doi:10.1016/j.epsr.2013.06.011Milano, F., & Zarate-Minano, R. (2013). A Systematic Method to Model Power Systems as Stochastic Differential Algebraic Equations. IEEE Transactions on Power Systems, 28(4), 4537-4544. doi:10.1109/tpwrs.2013.2266441Geurts, B. J., Holm, D. D., & Luesink, E. (2019). Lyapunov Exponents of Two Stochastic Lorenz 63 Systems. Journal of Statistical Physics, 179(5-6), 1343-1365. doi:10.1007/s10955-019-02457-

    Some notes to extend the study on random non-autonomous second order linear differential equations appearing in Mathematical Modeling

    Get PDF
    The objective of this paper is to complete certain issues from our recent contribution [J. Calatayud, J.-C. Cort\'es, M. Jornet, L. Villafuerte, Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties, Advances in Difference Equations, 2018:392, 1--29 (2018)]. We restate the main theorem therein that deals with the homogeneous case, so that the hypotheses are clearer and also easier to check in applications. Another novelty is that we tackle the non-homogeneous equation with a theorem of existence of mean square analytic solution and a numerical example. We also prove the uniqueness of mean square solution via an habitual Lipschitz condition that extends the classical Picard Theorem to mean square calculus. In this manner, the study on general random non-autonomous second order linear differential equations with analytic data processes is completely resolved. Finally, we relate our exposition based on random power series with polynomial chaos expansions and the random differential transform method, being the latter a reformulation of our random Fr\"obenius method.Comment: 15 pages, 0 figures, 2 table
    corecore