60 research outputs found

    Joint ML calibration and DOA estimation with separated arrays

    Full text link
    This paper investigates parametric direction-of-arrival (DOA) estimation in a particular context: i) each sensor is characterized by an unknown complex gain and ii) the array consists of a collection of subarrays which are substantially separated from each other leading to a structured noise covariance matrix. We propose two iterative algorithms based on the maximum likelihood (ML) estimation method adapted to the context of joint array calibration and DOA estimation. Numerical simulations reveal that the two proposed schemes, the iterative ML (IML) and the modified iterative ML (MIML) algorithms for joint array calibration and DOA estimation, outperform the state of the art methods and the MIML algorithm reaches the Cram\'er-Rao bound for a low number of iterations

    Space Time MUSIC: Consistent Signal Subspace Estimation for Wide-band Sensor Arrays

    Full text link
    Wide-band Direction of Arrival (DOA) estimation with sensor arrays is an essential task in sonar, radar, acoustics, biomedical and multimedia applications. Many state of the art wide-band DOA estimators coherently process frequency binned array outputs by approximate Maximum Likelihood, Weighted Subspace Fitting or focusing techniques. This paper shows that bin signals obtained by filter-bank approaches do not obey the finite rank narrow-band array model, because spectral leakage and the change of the array response with frequency within the bin create \emph{ghost sources} dependent on the particular realization of the source process. Therefore, existing DOA estimators based on binning cannot claim consistency even with the perfect knowledge of the array response. In this work, a more realistic array model with a finite length of the sensor impulse responses is assumed, which still has finite rank under a space-time formulation. It is shown that signal subspaces at arbitrary frequencies can be consistently recovered under mild conditions by applying MUSIC-type (ST-MUSIC) estimators to the dominant eigenvectors of the wide-band space-time sensor cross-correlation matrix. A novel Maximum Likelihood based ST-MUSIC subspace estimate is developed in order to recover consistency. The number of sources active at each frequency are estimated by Information Theoretic Criteria. The sample ST-MUSIC subspaces can be fed to any subspace fitting DOA estimator at single or multiple frequencies. Simulations confirm that the new technique clearly outperforms binning approaches at sufficiently high signal to noise ratio, when model mismatches exceed the noise floor.Comment: 15 pages, 10 figures. Accepted in a revised form by the IEEE Trans. on Signal Processing on 12 February 1918. @IEEE201

    A Compact Formulation for the â„“2,1\ell_{2,1} Mixed-Norm Minimization Problem

    Full text link
    Parameter estimation from multiple measurement vectors (MMVs) is a fundamental problem in many signal processing applications, e.g., spectral analysis and direction-of- arrival estimation. Recently, this problem has been address using prior information in form of a jointly sparse signal structure. A prominent approach for exploiting joint sparsity considers mixed-norm minimization in which, however, the problem size grows with the number of measurements and the desired resolution, respectively. In this work we derive an equivalent, compact reformulation of the â„“2,1\ell_{2,1} mixed-norm minimization problem which provides new insights on the relation between different existing approaches for jointly sparse signal reconstruction. The reformulation builds upon a compact parameterization, which models the row-norms of the sparse signal representation as parameters of interest, resulting in a significant reduction of the MMV problem size. Given the sparse vector of row-norms, the jointly sparse signal can be computed from the MMVs in closed form. For the special case of uniform linear sampling, we present an extension of the compact formulation for gridless parameter estimation by means of semidefinite programming. Furthermore, we derive in this case from our compact problem formulation the exact equivalence between the â„“2,1\ell_{2,1} mixed-norm minimization and the atomic-norm minimization. Additionally, for the case of irregular sampling or a large number of samples, we present a low complexity, grid-based implementation based on the coordinate descent method

    Enhancement of speech signals - with a focus on voiced speech models

    Get PDF

    Signals and Images in Sea Technologies

    Get PDF
    Life below water is the 14th Sustainable Development Goal (SDG) envisaged by the United Nations and is aimed at conserving and sustainably using the oceans, seas, and marine resources for sustainable development. It is not difficult to argue that signals and image technologies may play an essential role in achieving the foreseen targets linked to SDG 14. Besides increasing the general knowledge of ocean health by means of data analysis, methodologies based on signal and image processing can be helpful in environmental monitoring, in protecting and restoring ecosystems, in finding new sensor technologies for green routing and eco-friendly ships, in providing tools for implementing best practices for sustainable fishing, as well as in defining frameworks and intelligent systems for enforcing sea law and making the sea a safer and more secure place. Imaging is also a key element for the exploration of the underwater world for various scopes, ranging from the predictive maintenance of sub-sea pipelines and other infrastructure projects, to the discovery, documentation, and protection of sunken cultural heritage. The scope of this Special Issue encompasses investigations into techniques and ICT approaches and, in particular, the study and application of signal- and image-based methods and, in turn, exploration of the advantages of their application in the previously mentioned areas

    Estimating Sparse Representations from Dictionaries With Uncertainty

    Get PDF
    In the last two decades, sparse representations have gained increasing attention in a variety of engineering applications. A sparse representation of a signal requires a dictionary of basic elements that describe salient and discriminant features of that signal. When the dictionary is created from a mathematical model, its expressiveness depends on the quality of this model. In this dissertation, the problem of estimating sparse representations in the presence of errors and uncertainty in the dictionary is addressed. In the first part, a statistical framework for sparse regularization is introduced. The second part is concerned with the development of methodologies for estimating sparse representations from highly redundant dictionaries along with unknown dictionary parameters. The presented methods are illustrated using applications in direction finding and fiber-optic sensing. They serve as illustrative examples for investigating the abstract problems in the theory of sparse representations. Estimating a sparse representation often involves the solution of a regularized optimization problem. The presented regularization framework offers a systematic procedure for the determination of a regularization parameter that accounts for the joint effects of model errors and measurement noise. It is determined as an upper bound of the mean-squared error between the corrupted data and the ideal model. Despite proper regularization, the quality and accuracy of the obtained sparse representation remains affected by model errors and is indeed sensitive to changes in the regularization parameter. To alleviate this problem, dictionary calibration is performed. The framework is applied to the problem of direction finding. Redundancy enables the dictionary to describe a broader class of observations but also increases the similarity between different entries, which leads to ambiguous representations. To address the problem of redundancy and additional uncertainty in the dictionary parameters, two strategies are pursued. Firstly, an alternating estimation method for iteratively determining the underlying sparse representation and the dictionary parameters is presented. Also, theoretical bounds for the estimation errors are derived. Secondly, a Bayesian framework for estimating sparse representations and dictionary learning is developed. A hierarchical structure is considered to account for uncertainty in prior assumptions. The considered model for the coefficients of the sparse representation is particularly designed to handle high redundancy in the dictionary. Approximate inference is accomplished using a hybrid Markov Chain Monte Carlo algorithm. The performance and practical applicability of both methodologies is evaluated for a problem in fiber-optic sensing, where a mathematical model for the sensor signal is compiled. This model is used to generate a suitable parametric dictionary

    Through-the-Wall Imaging and Multipath Exploitation

    Get PDF
    We consider the problem of using electromagnetic sensing to estimate targets in complex environments, such as when they are hidden behind walls and other opaque objects. The often unknown electromagnetic interactions between the target and the surrounding area, make the problem challenging. To improve our results, we exploit information in the multipath of the objects surrounding both the target and the sensors. First, we estimate building layouts by using the jump-diffusion algorithm and employing prior knowledge about typical building layouts. We also take advantage of a detailed physical model that captures the scattering by the inner walls and efficiently utilizes the frequency bandwidth. We then localize targets hidden behind reinforced concrete walls. The sensing signals reflected from the targets are significantly distorted and attenuated by the embedded metal bars. Using the surface formulation of the method of moments, we model the response of the reinforced walls, and incorporate their transmission coefficients into the beamforming method to achieve better estimation accuracy. In a related effort, we utilize the sparsity constraint to improve electromagnetic imaging of hidden conducting targets, assuming that a set of equivalent sources can be substituted for the targets. We derive a linear measurement model and employ l1 regularization to identify the equivalent sources in the vicinity of the target surfaces. The proposed inverse method reconstructs the target shape in one or two steps, using single-frequency data. Our results are experimentally verified. Finally, we exploit the multipath from sensor-array platforms to facilitate direction finding. This in contrast to the usual approach, which utilizes the scattering close to the targets. We analyze the effect of the multipath in a statistical signal processing framework, and compute the Cramer-Rao bound to obtain the system resolution. We conduct experiments on a simple array platform to support our theoretical approach

    Applications of compressive sensing to direction of arrival estimation

    Get PDF
    Die Schätzung der Einfallsrichtungen (Directions of Arrival/DOA) mehrerer ebener Wellenfronten mit Hilfe eines Antennen-Arrays ist eine der prominentesten Fragestellungen im Gebiet der Array-Signalverarbeitung. Das nach wie vor starke Forschungsinteresse in dieser Richtung konzentriert sich vor allem auf die Reduktion des Hardware-Aufwands, im Sinne der Komplexität und des Energieverbrauchs der Empfänger, bei einem vorgegebenen Grad an Genauigkeit und Robustheit gegen Mehrwegeausbreitung. Diese Dissertation beschäftigt sich mit der Anwendung von Compressive Sensing (CS) auf das Gebiet der DOA-Schätzung mit dem Ziel, hiermit die Komplexität der Empfängerhardware zu reduzieren und gleichzeitig eine hohe Richtungsauflösung und Robustheit zu erreichen. CS wurde bereits auf das DOA-Problem angewandt unter der Ausnutzung der Tatsache, dass eine Superposition ebener Wellenfronten mit einer winkelabhängigen Leistungsdichte korrespondiert, die über den Winkel betrachtet sparse ist. Basierend auf der Idee wurden CS-basierte Algorithmen zur DOA-Schätzung vorgeschlagen, die sich durch eine geringe Rechenkomplexität, Robustheit gegenüber Quellenkorrelation und Flexibilität bezüglich der Wahl der Array-Geometrie auszeichnen. Die Anwendung von CS führt darüber hinaus zu einer erheblichen Reduktion der Hardware-Komplexität, da weniger Empfangskanäle benötigt werden und eine geringere Datenmenge zu verarbeiten und zu speichern ist, ohne dabei wesentliche Informationen zu verlieren. Im ersten Teil der Arbeit wird das Problem des Modellfehlers bei der CS-basierten DOA-Schätzung mit gitterbehafteten Verfahren untersucht. Ein häufig verwendeter Ansatz um das CS-Framework auf das DOA-Problem anzuwenden ist es, den kontinuierlichen Winkel-Parameter zu diskreditieren und damit ein Dictionary endlicher Größe zu bilden. Da die tatsächlichen Winkel fast sicher nicht auf diesem Gitter liegen werden, entsteht dabei ein unvermeidlicher Modellfehler, der sich auf die Schätzalgorithmen auswirkt. In der Arbeit wird ein analytischer Ansatz gewählt, um den Effekt der Gitterfehler auf die rekonstruierten Spektra zu untersuchen. Es wird gezeigt, dass sich die Messung einer Quelle aus beliebiger Richtung sehr gut durch die erwarteten Antworten ihrer beiden Nachbarn auf dem Gitter annähern lässt. Darauf basierend wird ein einfaches und effizientes Verfahren vorgeschlagen, den Gitterversatz zu schätzen. Dieser Ansatz ist anwendbar auf einzelne Quellen oder mehrere, räumlich gut separierte Quellen. Für den Fall mehrerer dicht benachbarter Quellen wird ein numerischer Ansatz zur gemeinsamen Schätzung des Gitterversatzes diskutiert. Im zweiten Teil der Arbeit untersuchen wir das Design kompressiver Antennenarrays für die DOA-Schätzung. Die Kompression im Sinne von Linearkombinationen der Antennensignale, erlaubt es, Arrays mit großer Apertur zu entwerfen, die nur wenige Empfangskanäle benötigen und sich konfigurieren lassen. In der Arbeit wird eine einfache Empfangsarchitektur vorgeschlagen und ein allgemeines Systemmodell diskutiert, welches verschiedene Optionen der tatsächlichen Hardware-Realisierung dieser Linearkombinationen zulässt. Im Anschluss wird das Design der Gewichte des analogen Kombinations-Netzwerks untersucht. Numerische Simulationen zeigen die Überlegenheit der vorgeschlagenen kompressiven Antennen-Arrays im Vergleich mit dünn besetzten Arrays der gleichen Komplexität sowie kompressiver Arrays mit zufällig gewählten Gewichten. Schließlich werden zwei weitere Anwendungen der vorgeschlagenen Ansätze diskutiert: CS-basierte Verzögerungsschätzung und kompressives Channel Sounding. Es wird demonstriert, dass die in beiden Gebieten durch die Anwendung der vorgeschlagenen Ansätze erhebliche Verbesserungen erzielt werden können.Direction of Arrival (DOA) estimation of plane waves impinging on an array of sensors is one of the most important tasks in array signal processing, which have attracted tremendous research interest over the past several decades. The estimated DOAs are used in various applications like localization of transmitting sources, massive MIMO and 5G Networks, tracking and surveillance in radar, and many others. The major objective in DOA estimation is to develop approaches that allow to reduce the hardware complexity in terms of receiver costs and power consumption, while providing a desired level of estimation accuracy and robustness in the presence of multiple sources and/or multiple paths. Compressive sensing (CS) is a novel sampling methodology merging signal acquisition and compression. It allows for sampling a signal with a rate below the conventional Nyquist bound. In essence, it has been shown that signals can be acquired at sub-Nyquist sampling rates without loss of information provided they possess a sufficiently sparse representation in some domain and that the measurement strategy is suitably chosen. CS has been recently applied to DOA estimation, leveraging the fact that a superposition of planar wavefronts corresponds to a sparse angular power spectrum. This dissertation investigates the application of compressive sensing to the DOA estimation problem with the goal to reduce the hardware complexity and/or achieve a high resolution and a high level of robustness. Many CS-based DOA estimation algorithms have been proposed in recent years showing tremendous advantages with respect to the complexity of the numerical solution while being insensitive to source correlation and allowing arbitrary array geometries. Moreover, CS has also been suggested to be applied in the spatial domain with the main goal to reduce the complexity of the measurement process by using fewer RF chains and storing less measured data without the loss of any significant information. In the first part of the work we investigate the model mismatch problem for CS based DOA estimation algorithms off the grid. To apply the CS framework a very common approach is to construct a finite dictionary by sampling the angular domain with a predefined sampling grid. Therefore, the target locations are almost surely not located exactly on a subset of these grid points. This leads to a model mismatch which deteriorates the performance of the estimators. We take an analytical approach to investigate the effect of such grid offsets on the recovered spectra showing that each off-grid source can be well approximated by the two neighboring points on the grid. We propose a simple and efficient scheme to estimate the grid offset for a single source or multiple well-separated sources. We also discuss a numerical procedure for the joint estimation of the grid offsets of closer sources. In the second part of the thesis we study the design of compressive antenna arrays for DOA estimation that aim to provide a larger aperture with a reduced hardware complexity and allowing reconfigurability, by a linear combination of the antenna outputs to a lower number of receiver channels. We present a basic receiver architecture of such a compressive array and introduce a generic system model that includes different options for the hardware implementation. We then discuss the design of the analog combining network that performs the receiver channel reduction. Our numerical simulations demonstrate the superiority of the proposed optimized compressive arrays compared to the sparse arrays of the same complexity and to compressive arrays with randomly chosen combining kernels. Finally, we consider two other applications of the sparse recovery and compressive arrays. The first application is CS based time delay estimation and the other one is compressive channel sounding. We show that the proposed approaches for sparse recovery off the grid and compressive arrays show significant improvements in the considered applications compared to conventional methods
    • …
    corecore