6,848 research outputs found

    Cross-layer system reliability assessment framework for hardware faults

    Get PDF
    System reliability estimation during early design phases facilitates informed decisions for the integration of effective protection mechanisms against different classes of hardware faults. When not all system abstraction layers (technology, circuit, microarchitecture, software) are factored in such an estimation model, the delivered reliability reports must be excessively pessimistic and thus lead to unacceptably expensive, over-designed systems. We propose a scalable, cross-layer methodology and supporting suite of tools for accurate but fast estimations of computing systems reliability. The backbone of the methodology is a component-based Bayesian model, which effectively calculates system reliability based on the masking probabilities of individual hardware and software components considering their complex interactions. Our detailed experimental evaluation for different technologies, microarchitectures, and benchmarks demonstrates that the proposed model delivers very accurate reliability estimations (FIT rates) compared to statistically significant but slow fault injection campaigns at the microarchitecture level.Peer ReviewedPostprint (author's final draft

    Statistical Reliability Estimation of Microprocessor-Based Systems

    Get PDF
    What is the probability that the execution state of a given microprocessor running a given application is correct, in a certain working environment with a given soft-error rate? Trying to answer this question using fault injection can be very expensive and time consuming. This paper proposes the baseline for a new methodology, based on microprocessor error probability profiling, that aims at estimating fault injection results without the need of a typical fault injection setup. The proposed methodology is based on two main ideas: a one-time fault-injection analysis of the microprocessor architecture to characterize the probability of successful execution of each of its instructions in presence of a soft-error, and a static and very fast analysis of the control and data flow of the target software application to compute its probability of success. The presented work goes beyond the dependability evaluation problem; it also has the potential to become the backbone for new tools able to help engineers to choose the best hardware and software architecture to structurally maximize the probability of a correct execution of the target softwar

    The doctoral research abstracts. Vol:6 2014 / Institute of Graduate Studies, UiTM

    Get PDF
    Congratulations to Institute of Graduate Studies on the continuous efforts to publish the 6th issue of the Doctoral Research Abstracts which ranged from the discipline of science and technology, business and administration to social science and humanities. This issue captures the novelty of research from 52 PhD doctorates receiving their scrolls in the UiTM’s 81st Convocation. This convocation is very significant especially for UiTM since we are celebrating the success of 52 PhD graduands – the highest number ever conferred at any one time. To the 52 doctorates, I would like it to be known that you have most certainly done UiTM proud by journeying through the scholastic path with its endless challenges and impediments, and by persevering right till the very end. This convocation should not be regarded as the end of your highest scholarly achievement and contribution to the body of knowledge but rather as the beginning of embarking into more innovative research from knowledge gained during this academic journey, for the community and country. As alumni of UiTM, we hold you dear to our hearts. The relationship that was once between a student and supervisor has now matured into comrades, forging and exploring together beyond the frontier of knowledge. We wish you all the best in your endeavour and may I offer my congratulations to all the graduands. ‘UiTM sentiasa dihati ku’ Tan Sri Dato’ Sri Prof Ir Dr Sahol Hamid Abu Bakar , FASc, PEng Vice Chancellor Universiti Teknologi MAR
    corecore