2,121 research outputs found

    Behaviour based anomaly detection system for smartphones using machine learning algorithm

    Get PDF
    In this research, we propose a novel, platform independent behaviour-based anomaly detection system for smartphones. The fundamental premise of this system is that every smartphone user has unique usage patterns. By modelling these patterns into a profile we can uniquely identify users. To evaluate this hypothesis, we conducted an experiment in which a data collection application was developed to accumulate real-life dataset consisting of application usage statistics, various system metrics and contextual information from smartphones. Descriptive statistical analysis was performed on our dataset to identify patterns of dissimilarity in smartphone usage of the participants of our experiment. Following this analysis, a Machine Learning algorithm was applied on the dataset to create a baseline usage profile for each participant. These profiles were compared to monitor deviations from baseline in a series of tests that we conducted, to determine the profiling accuracy. In the first test, seven day smartphone usage data consisting of eight features and an observation interval of one hour was used and an accuracy range of 73.41% to 100% was achieved. In this test, 8 out 10 user profiles were more than 95% accurate. The second test, utilised the entire dataset and achieved average accuracy of 44.50% to 95.48%. Not only these results are very promising in differentiating participants based on their usage, the implications of this research are far reaching as our system can also be extended to provide transparent, continuous user authentication on smartphones or work as a risk scoring engine for other Intrusion Detection System

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 17th International Annual Conference on Cyber Security, CNCERT 2021, held in Beijing, China, in AJuly 2021. The 14 papers presented were carefully reviewed and selected from 51 submissions. The papers are organized according to the following topical sections: ​data security; privacy protection; anomaly detection; traffic analysis; social network security; vulnerability detection; text classification

    A compression-based method for detecting anomalies in textual data

    Full text link
    Nowadays, information and communications technology systems are fundamental assets of our social and economical model, and thus they should be properly protected against the malicious activity of cybercriminals. Defence mechanisms are generally articulated around tools that trace and store information in several ways, the simplest one being the generation of plain text files coined as security logs. Such log files are usually inspected, in a semi-automatic way, by security analysts to detect events that may affect system integrity, confidentiality and availability. On this basis, we propose a parameter-free method to detect security incidents from structured text regardless its nature. We use the Normalized Compression Distance to obtain a set of features that can be used by a Support Vector Machine to classify events from a heterogeneous cybersecurity environment. In particular, we explore and validate the application of our method in four different cybersecurity domains: HTTP anomaly identification, spam detection, Domain Generation Algorithms tracking and sentiment analysis. The results obtained show the validity and flexibility of our approach in different security scenarios with a low configuration burdenThis research has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 872855 (TRESCA project), from the Comunidad de Madrid (Spain) under the projects CYNAMON (P2018/TCS-4566) and S2017/BMD-3688, co-financed with FSE and FEDER EU funds, by the Consejo Superior de Investigaciones Científicas (CSIC) under the project LINKA20216 (“Advancing in cybersecurity technologies”, i-LINK+ program), and by Spanish project MINECO/FEDER TIN2017-84452-

    An efficient hybrid system for anomaly detection in social networks

    Get PDF
    Anomaly detection has been an essential and dynamic research area in the data mining. A wide range of applications including different social medias have adopted different state-of-the-art methods to identify anomaly for ensuring user’s security and privacy. The social network refers to a forum used by different groups of people to express their thoughts, communicate with each other, and share the content needed. This social networks also facilitate abnormal activities, spread fake news, rumours, misinformation, unsolicited messages, and propaganda post malicious links. Therefore, detection of abnormalities is one of the important data analysis activities for the identification of normal or abnormal users on the social networks. In this paper, we have developed a hybrid anomaly detection method named DT-SVMNB that cascades several machine learning algorithms including decision tree (C5.0), Support Vector Machine (SVM) and Naïve Bayesian classifier (NBC) for classifying normal and abnormal users in social networks. We have extracted a list of unique features derived from users’ profile and contents. Using two kinds of dataset with the selected features, the proposed machine learning model called DT-SVMNB is trained. Our model classifies users as depressed one or suicidal one in the social network. We have conducted an experiment of our model using synthetic and real datasets from social network. The performance analysis demonstrates around 98% accuracy which proves the effectiveness and efficiency of our proposed system. © 2021, The Author(s)
    • …
    corecore