4,925 research outputs found

    Proceedings...

    Get PDF
    Anais e resumos dos trabalhos apresentados na II SIGEE.bitstream/item/152904/1/Second-International-Symposium-II-SIGEE.pdfCoordenador: Roberto Giolo de Almeida. Organizadores: Patrícia Perondi Anchão Oliveira; Maurício Saito; Cleber Oliveira Soares; Lucas Galvan; Lucimara Chiari; Fabiana Villa Alves; Davi José Bungenstab

    DD-dimensions Dirac fermions BEC-BCS cross-over thermodynamics

    Full text link
    An effective Proca Lagrangian action is used to address the vector condensation Lorentz violation effects on the equation of state of the strongly interacting fermions system. The interior quantum fluctuation effects are incorporated as an external field approximation indirectly through a fictive generalized Thomson Problem counterterm background. The general analytical formulas for the dd-dimensions thermodynamics are given near the unitary limit region. In the non-relativistic limit for d=3d=3, the universal dimensionless coefficient ξ=4/9\xi ={4}/{9} and energy gap Δ/ϵf=5/18\Delta/\epsilon_f ={5}/{18} are reasonably consistent with the existed theoretical and experimental results. In the unitary limit for d=2d=2 and T=0, the universal coefficient can even approach the extreme occasion ξ=0\xi=0 corresponding to the infinite effective fermion mass m∗=∞m^*=\infty which can be mapped to the strongly coupled two-dimensions electrons and is quite similar to the three-dimensions Bose-Einstein Condensation of ideal boson gas. Instead, for d=1d=1, the universal coefficient ξ\xi is negative, implying the non-existence of phase transition from superfluidity to normal state. The solutions manifest the quantum Ising universal class characteristic of the strongly coupled unitary fermions gas.Comment: Improved versio

    Secondary structure in trinucleotide repeat DNA in vivo

    Get PDF

    Frustration in Biomolecules

    Get PDF
    Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with a finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of "frustration" in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and how structure connects to function. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding, how a large part of the biological functions of proteins are related to subtle local frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. We hope to illustrate how Frustration is a fundamental concept in relating function to structural biology.Comment: 97 pages, 30 figure

    QUANTUM MANY-BODY PHENOMENA IN ULTRA-COLD ATOMS IN OPTICAL LATTICES

    Get PDF
    Two models are discussed here to illustrate the quantum many-body phenomena in mixtures of ultra-cold atoms in optical lattices. The first model describes a mixture of two species of bosonic atoms of equal masses in optical lattices and the second describes a mixture of heavy bosonic atoms and light fermionic atoms in optical lattices. For both models, we assume the trap is present and use parameters typical in experiment. For the first model, the discussion is aimed at providing a thorough description of the collective behavior of the binary mixture in various interaction regions, with emphasis on two many-body phenomena, pairing and anti-pairing, as a result of the inter-species interaction. The pairing leads to a new type of superfluid order, called the paired superfluid (PSF) and the anti-pairing leads to another type of superfluid order, called the counter-flow superfluid (CFSF). In addition, we discuss the coexistence of charge density wave order with the three superfluid orders in the strong interaction region. We use both Luttinger liquid theory and the time evolving block decimation (TEBD) method to study this model in one dimension. The discussion is organized in three parts: the phase diagram and the correlation functions; the noise correlation functions; and the transport properties. Two phase diagrams are constructed to map the different orders in the parameter space. The correlation functions, include noise correlations, are carefully examined for the determination of the orders and for possible detection methods. In the end, the transport properties of the PSF and CFSF orders are studied through the dipole oscillation induced by trap displacement. For the second model, examining a mixture of heavy bosons and light fermions, the discussion is oriented toward determining the thermal properties of the mixture for attractive inter-species interactions. This work is motivated by experiments creating artificial molecules through optical and magnetic control of ultra-cold atoms. We use the strong coupling (SC) expansion method to evaluate the density profile, the onsite inter-species correlations, the density fluctuations and the entropy per particle. Analytical expressions are derived for all the quantities above as well as the partition function. To benchmark the accuracy, the SC calculations are compared with inhomogeneous dynamical mean field theory (IDMFT) and Monte Carlo (MC) simulation. From the calculations, we find that 1) the efficiency of creating pre-formed molecules is significantly increased by confining the mixtures onto optical lattices; 2) the temperature of the mixtures in optical lattices can be reliably estimated through the density gradient and the density fluctuations

    A novel superconducting glass state in disordered thin films in Clogston limit

    Full text link
    A theory of mesoscopic fluctuations in disordered thin superconducting films in a parallel magnetic field is developed. At zero temperature, the superconducting state undergoes a phase transition into a state characterized by superfluid densities of random signs, instead of a spin polarized disordered Fermi liquid phase. Consequently, the ground state belongs to the same universality class as the 2D XY spin glass. As the magnetic field increases further, mesoscopic pairing states are nucleated in an otherwise homogeneous spin polarized disordered Fermi liquid. The statistics of these pairing states is universal depending on the sheet conductance of the 2D film.Comment: Latex, 39 pages, 2 figures included; to appear in Int. J. Mod. Phys.
    • …
    corecore