15,608 research outputs found

    Semanticizing syntactic patterns in NLP processing using SPARQL-DL queries

    Get PDF
    Some recent works on natural language semantic parsing make use of syntax and semantics together using different combination models. In our work we attempt to use SPARQL-DL as an interface between syntactic information given by the Stanford statistical parser (namely part-of-speech tagged text and typed dependency representation) and semantic information obtained from the FrameNet database. We use SPARQL-DL queries to check the presence of syntactic patterns within a sentence and identify their role as frame elements. The choice of SPARQL-DL is due to its usage as a common reference language for semantic applications and its high expressivity, which let rules to be generalized exploiting the inference capabilities of the underlying reasoner

    A hybrid generative/discriminative framework to train a semantic parser from an un-annotated corpus

    Get PDF
    We propose a hybrid generative/discriminative framework for semantic parsing which combines the hidden vector state (HVS) model and the hidden Markov support vector machines (HMSVMs). The HVS model is an extension of the basic discrete Markov model in which context is encoded as a stack-oriented state vector. The HM-SVMs combine the advantages of the hidden Markov models and the support vector machines. By employing a modified K-means clustering method, a small set of most representative sentences can be automatically selected from an un-annotated corpus. These sentences together with their abstract annotations are used to train an HVS model which could be subsequently applied on the whole corpus to generate semantic parsing results. The most confident semantic parsing results are selected to generate a fully-annotated corpus which is used to train the HM-SVMs. The proposed framework has been tested on the DARPA Communicator Data. Experimental results show that an improvement over the baseline HVS parser has been observed using the hybrid framework. When compared with the HM-SVMs trained from the fully annotated corpus, the hybrid framework gave a comparable performance with only a small set of lightly annotated sentences

    Treebank-based acquisition of wide-coverage, probabilistic LFG resources: project overview, results and evaluation

    Get PDF
    This paper presents an overview of a project to acquire wide-coverage, probabilistic Lexical-Functional Grammar (LFG) resources from treebanks. Our approach is based on an automatic annotation algorithm that annotates “raw” treebank trees with LFG f-structure information approximating to basic predicate-argument/dependency structure. From the f-structure-annotated treebank we extract probabilistic unification grammar resources. We present the annotation algorithm, the extraction of lexical information and the acquisition of wide-coverage and robust PCFG-based LFG approximations including long-distance dependency resolution. We show how the methodology can be applied to multilingual, treebank-based unification grammar acquisition. Finally we show how simple (quasi-)logical forms can be derived automatically from the f-structures generated for the treebank trees

    Learning Parse and Translation Decisions From Examples With Rich Context

    Full text link
    We present a knowledge and context-based system for parsing and translating natural language and evaluate it on sentences from the Wall Street Journal. Applying machine learning techniques, the system uses parse action examples acquired under supervision to generate a deterministic shift-reduce parser in the form of a decision structure. It relies heavily on context, as encoded in features which describe the morphological, syntactic, semantic and other aspects of a given parse state.Comment: 8 pages, LaTeX, 3 postscript figures, uses aclap.st

    Joint Video and Text Parsing for Understanding Events and Answering Queries

    Full text link
    We propose a framework for parsing video and text jointly for understanding events and answering user queries. Our framework produces a parse graph that represents the compositional structures of spatial information (objects and scenes), temporal information (actions and events) and causal information (causalities between events and fluents) in the video and text. The knowledge representation of our framework is based on a spatial-temporal-causal And-Or graph (S/T/C-AOG), which jointly models possible hierarchical compositions of objects, scenes and events as well as their interactions and mutual contexts, and specifies the prior probabilistic distribution of the parse graphs. We present a probabilistic generative model for joint parsing that captures the relations between the input video/text, their corresponding parse graphs and the joint parse graph. Based on the probabilistic model, we propose a joint parsing system consisting of three modules: video parsing, text parsing and joint inference. Video parsing and text parsing produce two parse graphs from the input video and text respectively. The joint inference module produces a joint parse graph by performing matching, deduction and revision on the video and text parse graphs. The proposed framework has the following objectives: Firstly, we aim at deep semantic parsing of video and text that goes beyond the traditional bag-of-words approaches; Secondly, we perform parsing and reasoning across the spatial, temporal and causal dimensions based on the joint S/T/C-AOG representation; Thirdly, we show that deep joint parsing facilitates subsequent applications such as generating narrative text descriptions and answering queries in the forms of who, what, when, where and why. We empirically evaluated our system based on comparison against ground-truth as well as accuracy of query answering and obtained satisfactory results

    A Deep Architecture for Semantic Parsing

    Full text link
    Many successful approaches to semantic parsing build on top of the syntactic analysis of text, and make use of distributional representations or statistical models to match parses to ontology-specific queries. This paper presents a novel deep learning architecture which provides a semantic parsing system through the union of two neural models of language semantics. It allows for the generation of ontology-specific queries from natural language statements and questions without the need for parsing, which makes it especially suitable to grammatically malformed or syntactically atypical text, such as tweets, as well as permitting the development of semantic parsers for resource-poor languages.Comment: In Proceedings of the Semantic Parsing Workshop at ACL 2014 (forthcoming
    corecore