94 research outputs found

    Inter-carrier interference mitigation for underwater acoustic communications

    Get PDF
    Communicating at a high data rate through the ocean is challenging. Such communications must be acoustic in order to travel long distances. The underwater acoustic channel has a long delay spread, which makes orthogonal frequency division multiplexing (OFDM) an attractive communication scheme. However, the underwater acoustic channel is highly dynamic, which has the potential to introduce significant inter-carrier interference (ICI). This thesis explores a number of means for mitigating ICI in such communication systems. One method that is explored is directly adapted linear turbo ICI cancellation. This scheme uses linear filters in an iterative structure to cancel the interference. Also explored is on-off keyed (OOK) OFDM, which is a signal designed to avoid ICI

    Multi-user receiver structures for direct sequence code division multiple access

    Get PDF

    Combined source-channel coding for a power and bandwidth constrained noisy channel

    Get PDF
    This thesis proposes a framework for combined source-channel coding under power and bandwidth constrained noisy channel. The framework is then applied to progressive image coding transmission using constant envelope M-ary Phase Shift Key (MPSK) signaling over an Additive White Gaussian Channel (AWGN) channel. First the framework for uncoded MPSK signaling is developed. Then, its extended to include coded modulation using Trellis Coded Modulation (TCM) for MPSK signaling. Simulation results show that coded MPSK signaling performs 3.1 to 5.2 dB better than uncoded MPSK signaling depending on the constellation size. Finally, an adaptive TCM system is presented for practical implementation of the proposed scheme, which outperforms uncoded MPSK system over all signal to noise ratio (Es/No) ranges for various MPSK modulation formats. In the second part of this thesis, the performance of the scheme is investigated from the channel capacity point of view. Using powerful channel codes like Turbo and Low Density Parity Check (LDPC) codes, the combined source-channel coding scheme is shown to be within 1 dB of the performance limit with MPSK channel signaling

    Investigation on target design for perpendicular magnetic recording channels

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Distributed signal processing using nested lattice codes

    No full text
    Multi-Terminal Source Coding (MTSC) addresses the problem of compressing correlated sources without communication links among them. In this thesis, the constructive approach of this problem is considered in an algebraic framework and a system design is provided that can be applicable in a variety of settings. Wyner-Ziv problem is first investigated: coding of an independent and identically distributed (i.i.d.) Gaussian source with side information available only at the decoder in the form of a noisy version of the source to be encoded. Theoretical models are first established and derived for calculating distortion-rate functions. Then a few novel practical code implementations are proposed by using the strategy of multi-dimensional nested lattice/trellis coding. By investigating various lattices in the dimensions considered, analysis is given on how lattice properties affect performance. Also proposed are methods on choosing good sublattices in multiple dimensions. By introducing scaling factors, the relationship between distortion and scaling factor is examined for various rates. The best high-dimensional lattice using our scale-rotate method can achieve a performance less than 1 dB at low rates from the Wyner-Ziv limit; and random nested ensembles can achieve a 1.87 dB gap with the limit. Moreover, the code design is extended to incorporate with distributed compressive sensing (DCS). Theoretical framework is proposed and practical design using nested lattice/trellis is presented for various scenarios. By using nested trellis, the simulation shows a 3.42 dB gap from our derived bound for the DCS plus Wyner-Ziv framework

    Super-orthogonal space-time turbo coded OFDM systems.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2012.The ever increasing demand for fast and efficient broadband wireless communication services requires future broadband communication systems to provide a high data rate, robust performance and low complexity within the limited available electromagnetic spectrum. One of the identified, most-promising techniques to support high performance and high data rate communication for future wireless broadband services is the deployment of multi-input multi-output (MIMO) antenna systems with orthogonal frequency division multiplexing (OFDM). The combination of MIMO and OFDM techniques guarantees a much more reliable and robust transmission over a hostile wireless channel through coding over the space, time and frequency domains. In this thesis, two full-rate space-time coded OFDM systems are proposed. The first one, designed for two transmit antennas, is called extended super-orthogonal space-time trellis coded OFDM (ESOSTTC-OFDM), and is based on constellation rotation. The second one, called super-quasi-orthogonal space-time trellis coded OFDM (SQOSTTCOFDM), combines a quasi-orthogonal space-time block code with a trellis code to provide a full-rate code for four transmit antennas. The designed space-time coded MIMO-OFDM systems achieve a high diversity order with high coding gain by exploiting the diversity advantage of frequency-selective fading channels. Concatenated codes have been shown to be an effective technique of achieving reliable communication close to the Shannon limit, provided that there is sufficient available diversity. In a bid to improve the performance of the super orthogonal space-time trellis code (SOSTTC) in frequency selective fading channels, five distinct concatenated codes are proposed for MIMO-OFDM over frequency-selective fading channels in the second part of this thesis. Four of the coding schemes are based on the concatenation of convolutional coding, interleaving, and space-time coding, along multiple-transmitter diversity systems, while the fifth coding scheme is based on the concatenation of two space-time codes and interleaving. The proposed concatenated Super-Orthogonal Space-Time Turbo-Coded OFDM System I. B. Oluwafemi 2012 vii coding schemes in MIMO-OFDM systems achieve high diversity gain by exploiting available diversity resources of frequency-selective fading channels and achieve a high coding gain through concatenations by employing the turbo principle. Using computer software simulations, the performance of the concatenated SOSTTC-OFDM schemes is compared with those of concatenated space-time trellis codes and those of conventional SOSTTC-OFDM schemes in frequency-selective fading channels. Simulation results show that the concatenated SOSTTC-OFDM system outperformed the concatenated space-time trellis codes and the conventional SOSTTC-OFDM system under the various channel scenarios in terms of both diversity order and coding gain
    corecore