38 research outputs found

    A descent subgradient method using Mifflin line search for nonsmooth nonconvex optimization

    Full text link
    We propose a descent subgradient algorithm for minimizing a real function, assumed to be locally Lipschitz, but not necessarily smooth or convex. To find an effective descent direction, the Goldstein subdifferential is approximated through an iterative process. The method enjoys a new two-point variant of Mifflin line search in which the subgradients are arbitrary. Thus, the line search procedure is easy to implement. Moreover, in comparison to bundle methods, the quadratic subproblems have a simple structure, and to handle nonconvexity the proposed method requires no algorithmic modification. We study the global convergence of the method and prove that any accumulation point of the generated sequence is Clarke stationary, assuming that the objective ff is weakly upper semismooth. We illustrate the efficiency and effectiveness of the proposed algorithm on a collection of academic and semi-academic test problems

    Mini-Workshop: Computational Optimization on Manifolds (online meeting)

    Get PDF
    The goal of the mini-workshop was to study the geometry, algorithms and applications of unconstrained and constrained optimization problems posed on Riemannian manifolds. Focus topics included the geometry of particular manifolds, the formulation and analysis of a number of application problems, as well as novel algorithms and their implementation

    A Generalized Newton Method for Subgradient Systems

    Full text link
    This paper proposes and develops a new Newton-type algorithm to solve subdifferential inclusions defined by subgradients of extended-real-valued prox-regular functions. The proposed algorithm is formulated in terms of the second-order subdifferential of such functions that enjoys extensive calculus rules and can be efficiently computed for broad classes of extended-real-valued functions. Based on this and on metric regularity and subregularity properties of subgradient mappings, we establish verifiable conditions ensuring well-posedness of the proposed algorithm and its local superlinear convergence. The obtained results are also new for the class of equations defined by continuously differentiable functions with Lipschitzian derivatives (C1,1\mathcal{C}^{1,1} functions), which is the underlying case of our consideration. The developed algorithm for prox-regular functions is formulated in terms of proximal mappings related to and reduces to Moreau envelopes. Besides numerous illustrative examples and comparison with known algorithms for C1,1\mathcal{C}^{1,1} functions and generalized equations, the paper presents applications of the proposed algorithm to the practically important class of Lasso problems arising in statistics and machine learning.Comment: 35 page

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    Nonlinear Programming Techniques Applied to Stochastic Programs with Recourse

    Get PDF
    Stochastic convex programs with recourse can equivalently be formulated as nonlinear convex programming problems. These possess some rather marked characteristics. Firstly, the proportion of linear to nonlinear variables is often large and leads to a natural partition of the constraints and objective. Secondly, the objective function corresponding to the nonlinear variables can vary over a wide range of possibilities; under appropriate assumptions about the underlying stochastic program it could be, for example, a smooth function, a separable polyhedral function or a nonsmooth function whose values and gradients are very expensive to compute. Thirdly, the problems are often large-scale and linearly constrained with special structure in the constraints. This paper is a comprehensive study of solution methods for stochastic programs with recourse viewed from the above standpoint. We describe a number of promising algorithmic approaches that are derived from methods of nonlinear programming. The discussion is a fairly general one, but the solution of two classes of stochastic programs with recourse are of particular interest. The first corresponds to stochastic linear programs with simple recourse and stochastic right-hand-side elements with given discrete probability distribution. The second corresponds to stochastic linear programs with complete recourse and stochastic right-hand-side vectors defined by a limited number of scenarios, each with given probability. A repeated theme is the use of the MINOS code of Murtagh and Saunders as a basis for developing suitable implementations
    corecore