115 research outputs found

    Multi - objective sliding mode control of active magnetic bearing system

    Get PDF
    Active Magnetic Bearing (AMB) system is known to inherit many nonlinearity effects due to its rotor dynamic motion and the electromagnetic actuators which make the system highly nonlinear, coupled and open-loop unstable. The major nonlinearities that are associated with AMB system are gyroscopic effect, rotor mass imbalance and nonlinear electromagnetics in which the gyroscopics and imbalance are dependent to the rotational speed of the rotor. In order to provide satisfactory system performance for a wide range of system condition, active control is thus essential. The main concern of the thesis is the modeling of the nonlinear AMB system and synthesizing a robust control method based on Sliding Mode Control (SMC) technique such that the system can achieve robust performance under various system nonlinearities. The model of the AMB system is developed based on the integration of the rotor and electromagnetic dynamics which forms nonlinear time varying state equations that represent a reasonably close description of the actual system. Based on the known bound of the system parameters and state variables, the model is restructured to become a class of uncertain system by using a deterministic approach. In formulating the control algorithm to control the system, SMC theory is adapted which involves the formulation of the sliding surface and the control law such that the state trajectories are driven to the stable sliding manifold. The surface design involves the transformation of the system into a special canonical representation such that the sliding motion can be characterized by a convex representation of the desired system performances. Optimal Linear Quadratic (LQ) characteristics and regional pole-clustering of the closed-loop poles are designed to be the objectives to be fulfilled in the surface design where the formulation is represented as a set of Linear Matrix Inequality optimization problem. For the control law design, a new continuous SMC controller is proposed in which asymptotic convergence of the system’s state trajectories in finite time is guaranteed. This is achieved by adapting the equivalent control approach with the exponential decaying boundary layer technique. The newly designed sliding surface and control law form the complete Multi-objective SMC (MO-SMC) and the proposed algorithm is applied into the nonlinear AMB in which the results show that robust system performance is achieved for various system conditions. The findings also demonstrate that the MO-SMC gives better system response than the reported ideal SMC (I-SMC) and continuous SMC (C-SMC)

    New Results on Negative Imaginary Systems Theory with Application to Flexible Structures and Nano-Positioning

    Full text link
    Flexible structure systems arise in many important applications such as ground and aerospace vehicles, atomic force microscopes, rotating flexible spacecraft, rotary cranes, robotics and flexible link manipulators, hard disk drives and other nano-positioning systems. In control systems design for these flexible systems, it is important to consider the effect of highly resonant modes. Such resonant modes are known to adversely affect the stability and performance of flexible structure control systems, and are often very sensitive to changes in environmental variables. These can lead to vibrational effects which limit the ability of control systems in achieving desired levels of performance. These problems are simplified to some extend by using force actuators combined with colocated measurements of velocity, position, or acceleration. Using force actuators combined with colocated measurements of velocity can be studied using positive real systems theory, which has received a great attention since 1962. Using force actuators combined with colocated measurements of position and acceleration can be studied using negative imaginary (NI) systems theory. In this thesis, we provide a generalization and development of negative imaginary systems theory to include a wider class of systems. In the generalization of NI systems theory, we provide a new negative imaginary definition that allows for flexible systems with free body motion. Also, we provide a new stability condition for a positive feedback control system where the plant is NI according to the new definition and the controller is strictly negative imaginary (SNI). This general stability result captures all previous NI stability results which have been developed. This thesis also presents analytical tools for negative imaginary systems theory, which can be useful in the practical applications of the theory. Two methods that can be used for checking the negative imaginary property for a given system are presented. Also, methods for enforcing NI dynamics on mathematical system models to satisfy an NI Property are explored. A systematic method to design controllers for NI systems with guaranteed robust stability also is presented. A practical application of control system design for a three-mirror cavity locking system is presented in the end of the thesis

    Robustness analysis and controller synthesis for bilateral teleoperation systems via IQCs

    Get PDF
    • …
    corecore