184 research outputs found

    Robust control strategies for unstable systems with input/output delays

    Full text link
    Los sistemas con retardo temporal aparecen con frecuencia en el ámbito de la ingeniería, por ejemplo en transmisiones hidráulicas o mecánicas, procesos metalúrgicos o sistemas de control en red. Los retardos temporales han despertado el interés de los investigadores en el ámbito del control desde finales de los años 50. Se ha desarrollado una amplia gama de herramientas para el análisis de su estabilidad y prestaciones, especialmente durante las dos últimas décadas. Esta tesis se centra en la estabilización de sistemas afectados por retardos temporales en la actuación y/o la medida. Concretamente, las contribuciones que aquí se incluyen tienen por objetivo mejorar las prestaciones de los controladores existentes en presencia de perturbaciones. Los retardos temporales degradan, inevitablemente, el desempeño de un bucle de control. No es de extrañar que el rechazo de perturbaciones haya sido motivo de estudio desde que emergieron los primeros controladores predictivos para sistemas con retardo. Las estrategias presentadas en esta tesis se basan en la combinación de controladores predictivos y observadores de perturbaciones. Estos últimos han sido aplicados con éxito para mejorar el rechazo de perturbaciones de controladores convencionales. Sin embargo, la aplicación de esta metodología a sistemas con retardo es poco frecuente en la literatura, la cual se investiga exhaustivamente en esta tesis. Otro inconveniente de los controladores predictivos está relacionado con su implementación, que puede llevar a la inestabilidad si no se realiza cuidadosamente. Este fenómeno está relacionado con el hecho de que las leyes de control predictivas se expresan mediante una ecuación integral. En esta tesis se presenta una estructura de control alternativa que evita este problema, la cual utiliza un observador de dimensión infinita, gobernado por una ecuación en derivadas parciales de tipo hiperbólico.Time-delay systems are ubiquitous in many engineering applications, such as mechanical or fluid transmissions, metallurgical processes or networked control systems. Time-delay systems have attracted the interest of control researchers since the late 50's. A wide variety of tools for stability and performance analysis has been developed, specially over the past two decades. This thesis is focused on the problem of stabilizing systems that are affected by delays on the actuator and/or sensing paths. More specifically, the contributions herein reported aim at improving the performance of existing controllers in the presence of external disturbances. Time delays unavoidably degrade the control loop performance. Disturbance rejection has been a matter of concern since the first predictive controllers for time-delay systems emerged. The key idea of the strategies presented in this thesis is the combination of predictive controllers and disturbance observers. The latter have been successfully applied to improve the disturbance rejection capabilities of conventional controllers. However, the application of this methodology to time-delay systems is rarely found in the literature. This combination is extensively investigated in this thesis. Another handicap of predictive controllers has to do with their implementation, which can induce instability if not done carefully. This issue is related to the fact that predictive control laws take the form of integral equations. An alternative control structure that avoids this problem is also reported in this thesis, which employs an infinite-dimensional observer, governed by a hyperbolic partial differential equation.Sanz Díaz, R. (2018). Robust control strategies for unstable systems with input/output delays [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/111830TESI

    A digital twin for controlling thermo-fluidic processes

    Get PDF

    A digital twin for controlling thermo-fluidic processes

    Get PDF

    Infinite-Dimensional Modelling and Control of a MEMS Deformable Mirror with Applications in Adaptive Optics

    Get PDF
    RÉSUMÉ Le contrôle de déformation est un problème émergent dans les micro structures intelligentes. Une des applications type est le contrôle de la déformation de miroirs dans l’optique adaptative dans laquelle on oriente la face du miroir selon une géométrie précise en utilisant une gamme de micro-vérins afin d’éliminer la distortion lumineuse. Dans cette thèse, le problème de la conception du contrôle du suivi est considéré directement avec les modèles décrits par des équations aux dérivées partielles définies dans l’espace de dimension infinie. L’architecture du contrôleur proposée se base sur la stabilisation par retour des variables et le suivi des trajectoires utilisant la théorie des systèmes différentiellement plats. La combinaison de la commande par rétroaction et la planification des trajectoires permet de réduire la complexité de la structure du contrôleur pour que ce dernier puisse être implémentée dans les microsystèmes avec les techniques disponibles de nos jours. Pour aboutir à une architecture implémentable dans les applications en temps réel, la fonction de Green est considérée comme une fonction de test pour concevoir le contrôleur et pour représenter les trajectoires de référence dans la planification de mouvements.----------ABSTRACT Deformation control is an emerging problem for micro-smart structures. One of its exciting applications is the control of deformable mirrors in adaptive optics systems, in which the mirror face-sheet is steered to a desired shape using an array of micro-actuators in order to remove light distortions. This technology is an enabling key for the forthcoming extremely large ground-based telescopes. Large-scale deformable mirrors typically exhibit complex dynamical behaviors mostly due to micro-actuators distributed in the domain of the system which in particular complicates control design. A model of this device may be described by a fourth-order in space/second-order in time partial differential equation for the mirror face-sheet with Dirac delta functions located in the domain of the system to represent the micro-actuators. Most of control design methods dealing with partial differential equations are performed on lumped models, which often leads to high-dimensional and complex feedback control structures. Furthermore, control designs achieved based on partial differential equation models correspond to boundary control problems. In this thesis, a tracking control scheme is designed directly based on the infinite-dimensional model of the system. The control scheme is introduced based on establishing a relationship between the original nonhomogeneous model and a target system in a standard boundary control form. Thereby, the existing boundary control methods may be applicable. For the control design, we apply the tool of differential flatness to a partial differential equation system controlled by multiple actuators, which is essentially a multiple-input multiple-output partial differential equation problem. To avoid early lumping in the motion planning, we use the properties of the Green’s function of the system to represent the reference trajectories. A finite set of these functions is considered to establish a one-to-one map between the input space and output space. This allows an implementable scheme for real-time applications. Since pure feedforward control is only applicable for perfectly known, and stable systems, feedback control is required to account for instability, model uncertainties, and disturbances. Hence, a stabilizing feedback is designed to stabilize the system around the reference trajectories. The combination of differential flatness for motion planning and stabilizing feedback provides a systematic control scheme suitable for the real-time applications of large-scale deformable mirrors

    Observation and control of PDE with disturbances

    Get PDF
    In this Thesis, the problem of controlling and Observing some classes of distributed parameter systems is addressed. The particularity of this work is to consider partial differential equations (PDE) under the effect of external unknown disturbances. We consider generalized forms of two popular parabolic and hyperbolic infinite dimensional dynamics, the heat and wave equations. Sliding-mode control is used to achieve the control goals, exploiting the robustness properties of this robust control technique against persistent disturbances and parameter uncertainties

    Observation and control of PDE with disturbances

    Get PDF
    In this Thesis, the problem of controlling and Observing some classes of distributed parameter systems is addressed. The particularity of this work is to consider partial differential equations (PDE) under the effect of external unknown disturbances. We consider generalized forms of two popular parabolic and hyperbolic infinite dimensional dynamics, the heat and wave equations. Sliding-mode control is used to achieve the control goals, exploiting the robustness properties of this robust control technique against persistent disturbances and parameter uncertainties

    Estimation and Control of Robotic Radiation-Based Processes

    Get PDF
    This dissertation presents a closed-loop control and state estimation framework for a class of distributed-parameter processes employing a moving radiant actuator. These radiation-based processes have the potential to significantly reduce the energy consumption and environmental impact of traditional industrial processes. Successful implementation of these approaches in large-scale applications requires precise control systems. This dissertation provides a comprehensive framework for: 1) integration of trajectory generation and feedback control, 2) online distributed state and parameter estimation, and 3) optimal coordination of multiple manipulated variables, so as to achieve elaborate control of these radiation-based processes for improved process quality and energy efficiency. The developed framework addresses important issues for estimation and control of processes employing a moving radiant actuator from both practical and theoretical aspects. For practical systems, an integrated motion and process control approach is first developed to compensate for disturbances by adjusting either the radiant power of the actuator or the speed of the robot end effector based on available process measurements, such as temperature distribution. The control problem is then generalized by using a 1D scanning formulation that describes common characteristics of typical radiant source actuated processes. Based on this 1D scanning formulation, a distributed state and parameter estimation scheme that incorporates a dual extended Kalman filter (DEKF) approach is developed to provide real-time process estimation. In this estimation scheme, an activating policy accompanying the moving actuator is applied in order to reduce the computational cost and compensate for observability changes caused by the actuator\u27s movement. To achieve further improvements in process quality, a static optimization and a rule-based feedback control strategy are used to coordinate multiple manipulated variables in open-loop and closed-loop manners. Finally, a distributed model predictive control (MPC) framework is developed to integrate process optimization and closed-loop coordination of manipulated variables. Simulation studies conducted on a robotic ultraviolet (UV) paint curing process show that the developed estimation and control framework for radiant source actuated processes provide improved process quality and energy efficiency by adaptively compensating for disturbances and optimally coordinating multiple manipulated variables
    • …
    corecore