3,543 research outputs found

    Assessment of model based (input) impedance, pulse wave velocity, and wave reflection in the Asklepios Cohort

    Get PDF
    Objectives : Arterial stiffness and wave reflection parameters assessed from both invasive and non-invasive pressure and flow readings are used as surrogates for ventricular and vascular load. They have been reported to predict adverse cardiovascular events, but clinical assessment is laborious and may limit widespread use. This study aims to investigate measures of arterial stiffness and central hemodynamics provided by arterial tonometry alone and in combination with aortic root flows derived by echocardiography against surrogates derived by a mathematical pressure and flow model in a healthy middle-aged cohort. Methods : Measurements of carotid artery tonometry and echocardiography were performed on 2226 ASKLEPIOS study participants and parameters of systemic hemodynamics, arterial stiffness and wave reflection based on pressure and flow were measured. In a second step, the analysis was repeated but echocardiography derived flows were substituted by flows provided by a novel mathematical model. This was followed by a quantitative method comparison. Results : All investigated parameters showed a significant association between the methods. Overall agreement was acceptable for all parameters (mean differences: -0.0102 (0.033 SD) mmHg*s/ml for characteristic impedance, 0.36 (4.21 SD) mmHg for forward pressure amplitude, 2.26 (3.51 SD) mmHg for backward pressure amplitude and 0.717 (1.25 SD) m/s for pulse wave velocity). Conclusion : The results indicate that the use of model-based surrogates in a healthy middle aged cohort is feasible and deserves further attention

    Cross-compensation of FET sensor drift and matrix effects in the industrial continuous monitoring of ion concentrations

    Full text link
    Field-effect transistor (FET) sensors are attractive potentiometric (bio)chemical measurement devices because of their fast response, low output impedance, and potential for miniaturization in standard integrated circuit manufacturing technologies. Yet the wide adoption of these sensors for real-world applications is still limited, mainly due to temporal drift and cross-sensitivities that introduce considerable error in the measurements. In this paper, we demonstrate that such non-idealities can be corrected by joint use of an array of FET sensors – selective to target and major interfering ions – with machine learning (ML) methods in order to accurately predict ion concentrations continuously and in the field. We studied the predictive performance of linear regression (LR), support vector regression (SVR), and state-of-art deep neural networks (DNNs) when monitoring pH from combinatorial H+, Na+, and K+ ion-sensitive FET (ISFET) sequences of readings collected over a period of 90 consecutive days in real water quality assessment conditions. The proposed ML algorithms were trained against reference online measurements obtained from a commercial pH sensor. Results show a greater capability of DNNs to provide precise pH monitoring for longer than a week, achieving a relative root-mean-square error reduction of 73% over standard two-point sensor calibration methods

    Learning to Find Eye Region Landmarks for Remote Gaze Estimation in Unconstrained Settings

    Full text link
    Conventional feature-based and model-based gaze estimation methods have proven to perform well in settings with controlled illumination and specialized cameras. In unconstrained real-world settings, however, such methods are surpassed by recent appearance-based methods due to difficulties in modeling factors such as illumination changes and other visual artifacts. We present a novel learning-based method for eye region landmark localization that enables conventional methods to be competitive to latest appearance-based methods. Despite having been trained exclusively on synthetic data, our method exceeds the state of the art for iris localization and eye shape registration on real-world imagery. We then use the detected landmarks as input to iterative model-fitting and lightweight learning-based gaze estimation methods. Our approach outperforms existing model-fitting and appearance-based methods in the context of person-independent and personalized gaze estimation

    Development, Validation, and Clinical Application of a Numerical Model for Pulse Wave Velocity Propagation in a Cardiovascular System with Application to Noninvasive Blood Pressure Measurements

    Get PDF
    High blood pressure blood pressure is an important risk factor for cardiovascular disease and affects almost one-third of the U.S. adult population. Historical cuff-less non-invasive techniques used to monitor blood pressure are not accurate and highlight the need for first principal models. The first model is a one-dimensional model for pulse wave velocity (PWV) propagation in compliant arteries that accounts for nonlinear fluids in a linear elastic thin walled vessel. The results indicate an inverse quadratic relationship (R^2=.99) between ejection time and PWV, with ejection time dominating the PWV shifts (12%). The second model predicts the general relationship between PWV and blood pressure with a rigorous account of nonlinearities in the fluid dynamics, blood vessel elasticity, and finite dynamic deformation of a membrane type thin anisotropic wall. The nonlinear model achieves the best match with the experimental data. To retrieve individual vascular information of a patient, the inverse problem of hemodynamics is presented, calculating local orthotropic hyperelastic properties of the arterial wall. The final model examines the impact of the thick arterial wall with different material properties in the radial direction. For a hypertensive subject the thick wall model provides improved accuracy up to 8.4% in PWV prediction over its thin wall counterpart. This translates to nearly 20% improvement in blood pressure prediction based on a PWV measure. The models highlight flow velocity is additive to the classic pressure wave, suggesting flow velocity correction may be important for cuff-less, non-invasive blood pressure measures. Systolic flow correction of the measured PWV improves the R2 correlation to systolic blood pressure from 0.81 to 0.92 for the mongrel dog study, and 0.34 to 0.88 for the human subjects study. The algorithms and insight resulting from this work can enable the development of an integrated microsystem for cuff-less, non-invasive blood pressure monitoring

    GA-SVR and pseudo-position-aided GPS/INS integration during GPS outage

    Get PDF
    The performance of Global Positioning System and Inertial Navigation System (GPS/INS) integrated navigation is reduced when GPS is blocked. This paper proposes an algorithm to overcome the condition where GPS is unavailable. Together with a parameter-optimised Genetic Algorithm (GA), a Support Vector Regression (SVR) algorithm is used to construct the mapping function between the specific force, angular rate increments of INS measurements and the increments of the GPS position. During GPS outages, the real-time pseudo-GPS position is predicted with the mapping function, and the corresponding covariance matrix is estimated by an improved adaptive filtering algorithm. A GPS/INS integration scheme is demonstrated where the vehicle travels along a straight line and around a curve, with respect to both low-speed-stable and high-speed-unstable navigation platforms. The results show that the proposed algorithm provides a better performance when GPS is unavailable

    Development of a land use regression model for black carbon using mobile monitoring data and its application to pollution-avoiding routing

    Get PDF
    Black carbon is often used as an indicator for combustion-related air pollution. In urban environments, on-road black carbon concentrations have a large spatial variability, suggesting that the personal exposure of a cyclist to black carbon can heavily depend on the route that is chosen to reach a destination. In this paper, we describe the development of a cyclist routing procedure that minimizes personal exposure to black carbon. Firstly, a land use regression model for predicting black carbon concentrations in an urban environment is developed using mobile monitoring data, collected by cyclists. The optimal model is selected and validated using a spatially stratified cross-validation scheme. The resulting model is integrated in a dedicated routing procedure that minimizes personal exposure to black carbon during cycling. The best model obtains a coefficient of multiple correlation of R = 0.520. Simulations with the black carbon exposure minimizing routing procedure indicate that the inhaled amount of black carbon is reduced by 1.58% on average as compared to the shortest-path route, with extreme cases where a reduction of up to 13.35% is obtained. Moreover, we observed that the average exposure to black carbon and the exposure to local peak concentrations on a route are competing objectives, and propose a parametrized cost function for the routing problem that allows for a gradual transition from routes that minimize average exposure to routes that minimize peak exposure
    • …
    corecore