1,163 research outputs found

    Static deadlock detection for concurrent go by global session graph synthesis

    No full text
    © 2016 ACM.Go is a programming language developed at Google, with channelbased concurrent features based on CSP. Go can detect global communication deadlocks at runtime when all threads of execution are blocked, but deadlocks in other paths of execution could be undetected. We present a new static analyser for concurrent Go code to find potential communication errors such as communication mismatch and deadlocks at compile time. Our tool extracts the communication operations as session types, which are then converted into Communicating Finite State Machines (CFSMs). Finally, we apply a recent theoretical result on choreography synthesis to generate a global graph representing the overall communication pattern of a concurrent program. If the synthesis is successful, then the program is free from communication errors. We have implemented the technique in a tool, and applied it to analyse common Go concurrency patterns and an open source application with over 700 lines of code

    Static Trace-Based Deadlock Analysis for Synchronous Mini-Go

    Full text link
    We consider the problem of static deadlock detection for programs in the Go programming language which make use of synchronous channel communications. In our analysis, regular expressions extended with a fork operator capture the communication behavior of a program. Starting from a simple criterion that characterizes traces of deadlock-free programs, we develop automata-based methods to check for deadlock-freedom. The approach is implemented and evaluated with a series of examples

    Benefits of Session Types for software Development

    Get PDF
    Session types are a formalism used to specify and check the correctness of communication based systems. Within their scope, they can guarantee the absence of communication errors such as deadlock, sending an unexpected message or failing to handle an incoming message. Introduced over two decades ago, they have developed into a significant theme in programming languages. In this paper we examine the beliefs that drive research into this area and make it popular. We look at the claims and motivation behind session types throughout the literature. We identify the hypotheses upon which session types have been designed and implemented, and attempt to clarify and formulate them in a more suitable manner for testing

    Behavioural Types: from Theory to Tools

    Get PDF
    This book presents research produced by members of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems (BETTY), a European research network that was funded from October 2012 to October 2016. The technical theme of BETTY was the use of behavioural type systems in programming languages, to specify and verify properties of programs beyond the traditional use of type systems to describe data processing. A significant area within behavioural types is session types, which concerns the use of type-theoretic techniques to describe communication protocols so that static typechecking or dynamic monitoring can verify that protocols are implemented correctly. This is closely related to the topic of choreography, in which system design starts from a description of the overall communication flows. Another area is behavioural contracts, which describe the obligations of interacting agents in a way that enables blame to be attributed to the agent responsible for failed interaction. Type-theoretic techniques can also be used to analyse potential deadlocks due to cyclic dependencies between inter-process interactions. BETTY was organised into four Working Groups: (1) Foundations; (2) Security; (3) Programming Languages; (4) Tools and Applications. Working Groups 1–3 produced “state-of-the-art reports”, which originally intended to take snapshots of the field at the time the network started, but grew into substantial survey articles including much research carried out during the network [1–3]. The situation for Working Group 4 was different. When the network started, the community had produced relatively few implementations of programming languages or tools. One of the aims of the network was to encourage more implementation work, and this was a great success. The community as a whole has developed a greater interest in putting theoretical ideas into practice. The sixteen chapters in this book describe systems that were either completely developed, or substantially extended, during BETTY. The total of 41 co-authors represents a significant proportion of the active participants in the network (around 120 people who attended at least one meeting). The book is a report on the new state of the art created by BETTY in xv xvi Preface the area of Working Group 4, and the title “Behavioural Types: from Theory to Tools” summarises the trajectory of the community during the last four years. The book begins with two tutorials by Atzei et al. on contract-oriented design of distributed systems. Chapter 1 introduces the CO2 contract specifi- cation language and the Diogenes toolchain. Chapter 2 describes how timing constraints can be incorporated into the framework and checked with the CO2 middleware. Part of the CO2 middleware is a monitoring system, and the theme of monitoring continues in the next two chapters. In Chapter 3, Attard et al. present detectEr, a runtime monitoring tool for Erlang programs that allows correctness properties to be expressed in Hennessy-Milner logic. In Chapter 4, which is the first chapter about session types, Neykova and Yoshida describe a runtime verification framework for Python programs. Communication protocols are specified in the Scribble language, which is based on multiparty session types. The next three chapters deal with choreographic programming. In Chap- ter 5, Debois and Hildebrandt present a toolset for working with dynamic condition response (DCR) graphs, which are a graphical formalism for choreography. Chapter 6, by Lange et al., continues the graphical theme with ChorGram, a tool for synthesising global graphical choreographies from collections of communicating finite-state automata. Giallorenzo et al., in Chapter 7, consider runtime adaptation. They describe AIOCJ, a choreographic programming language in which runtime adaptation is supported with a guarantee that it doesn’t introduce deadlocks or races. Deadlock analysis is important in other settings too, and there are two more chapters about it. In Chapter 8, Padovani describes the Hypha tool, which uses a type-based approach to check deadlock-freedom and lock-freedom of systems modelled in a form of pi-calculus. In Chapter 9, Garcia and Laneve present a tool for analysing deadlocks in Java programs; this tool, called JaDA, is based on a behavioural type system. The next three chapters report on projects that have added session types to functional programming languages in order to support typechecking of communication-based code. In Chapter 10, Orchard and Yoshida describe an implementation of session types in Haskell, and survey several approaches to typechecking the linearity conditions required for safe session implemen- tation. In Chapter 11, Melgratti and Padovani describe an implementation of session types in OCaml. Their system uses runtime linearity checking. In Chapter 12, Lindley and Morris describe an extension of the web programming language Links with session types; their work contrasts with the previous two chapters in being less constrained by an existing language design. Continuing the theme of session types in programming languages, the next two chapters describe two approaches based on Java. Hu’s work, presented in Chapter 13, starts with the Scribble description of a multiparty session type and generates an API in the form of a collection of Java classes, each class containing the communication methods that are available in a particular state of the protocol. Dardha et al., in Chapter 14, also start with a Scribble specification. Their StMungo tool generates an API as a single class with an associated typestate specification to constrain sequences of method calls. Code that uses the API can be checked for correctness with the Mungo typechecker. Finally, there are two chapters about programming with the MPI libraries. Chapter 15, by Ng and Yoshida, uses an extension of Scribble, called Pabble, to describe protocols that parametric in the number of runtime roles. From a Pabble specification they generate C code that uses MPI for communication and is guaranteed correct by construction. Chapter 16, by Ng et al., describes the ParTypes framework for analysing existing C+MPI programs with respect to protocols defined in an extension of Scribble. We hope that the book will serve a useful purpose as a report on the activities of COST Action IC1201 and as a survey of programming languages and tools based on behavioural types

    Behavioural Types: from Theory to Tools

    Get PDF
    This book presents research produced by members of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems (BETTY), a European research network that was funded from October 2012 to October 2016. The technical theme of BETTY was the use of behavioural type systems in programming languages, to specify and verify properties of programs beyond the traditional use of type systems to describe data processing. A significant area within behavioural types is session types, which concerns the use of type-theoretic techniques to describe communication protocols so that static typechecking or dynamic monitoring can verify that protocols are implemented correctly. This is closely related to the topic of choreography, in which system design starts from a description of the overall communication flows. Another area is behavioural contracts, which describe the obligations of interacting agents in a way that enables blame to be attributed to the agent responsible for failed interaction. Type-theoretic techniques can also be used to analyse potential deadlocks due to cyclic dependencies between inter-process interactions. BETTY was organised into four Working Groups: (1) Foundations; (2) Security; (3) Programming Languages; (4) Tools and Applications. Working Groups 1–3 produced “state-of-the-art reports”, which originally intended to take snapshots of the field at the time the network started, but grew into substantial survey articles including much research carried out during the network [1–3]. The situation for Working Group 4 was different. When the network started, the community had produced relatively few implementations of programming languages or tools. One of the aims of the network was to encourage more implementation work, and this was a great success. The community as a whole has developed a greater interest in putting theoretical ideas into practice. The sixteen chapters in this book describe systems that were either completely developed, or substantially extended, during BETTY. The total of 41 co-authors represents a significant proportion of the active participants in the network (around 120 people who attended at least one meeting). The book is a report on the new state of the art created by BETTY in xv xvi Preface the area of Working Group 4, and the title “Behavioural Types: from Theory to Tools” summarises the trajectory of the community during the last four years. The book begins with two tutorials by Atzei et al. on contract-oriented design of distributed systems. Chapter 1 introduces the CO2 contract specifi- cation language and the Diogenes toolchain. Chapter 2 describes how timing constraints can be incorporated into the framework and checked with the CO2 middleware. Part of the CO2 middleware is a monitoring system, and the theme of monitoring continues in the next two chapters. In Chapter 3, Attard et al. present detectEr, a runtime monitoring tool for Erlang programs that allows correctness properties to be expressed in Hennessy-Milner logic. In Chapter 4, which is the first chapter about session types, Neykova and Yoshida describe a runtime verification framework for Python programs. Communication protocols are specified in the Scribble language, which is based on multiparty session types. The next three chapters deal with choreographic programming. In Chap- ter 5, Debois and Hildebrandt present a toolset for working with dynamic condition response (DCR) graphs, which are a graphical formalism for choreography. Chapter 6, by Lange et al., continues the graphical theme with ChorGram, a tool for synthesising global graphical choreographies from collections of communicating finite-state automata. Giallorenzo et al., in Chapter 7, consider runtime adaptation. They describe AIOCJ, a choreographic programming language in which runtime adaptation is supported with a guarantee that it doesn’t introduce deadlocks or races. Deadlock analysis is important in other settings too, and there are two more chapters about it. In Chapter 8, Padovani describes the Hypha tool, which uses a type-based approach to check deadlock-freedom and lock-freedom of systems modelled in a form of pi-calculus. In Chapter 9, Garcia and Laneve present a tool for analysing deadlocks in Java programs; this tool, called JaDA, is based on a behavioural type system. The next three chapters report on projects that have added session types to functional programming languages in order to support typechecking of communication-based code. In Chapter 10, Orchard and Yoshida describe an implementation of session types in Haskell, and survey several approaches to typechecking the linearity conditions required for safe session implemen- tation. In Chapter 11, Melgratti and Padovani describe an implementation of session types in OCaml. Their system uses runtime linearity checking. In Chapter 12, Lindley and Morris describe an extension of the web programming language Links with session types; their work contrasts with the previous two chapters in being less constrained by an existing language design. Continuing the theme of session types in programming languages, the next two chapters describe two approaches based on Java. Hu’s work, presented in Chapter 13, starts with the Scribble description of a multiparty session type and generates an API in the form of a collection of Java classes, each class containing the communication methods that are available in a particular state of the protocol. Dardha et al., in Chapter 14, also start with a Scribble specification. Their StMungo tool generates an API as a single class with an associated typestate specification to constrain sequences of method calls. Code that uses the API can be checked for correctness with the Mungo typechecker. Finally, there are two chapters about programming with the MPI libraries. Chapter 15, by Ng and Yoshida, uses an extension of Scribble, called Pabble, to describe protocols that parametric in the number of runtime roles. From a Pabble specification they generate C code that uses MPI for communication and is guaranteed correct by construction. Chapter 16, by Ng et al., describes the ParTypes framework for analysing existing C+MPI programs with respect to protocols defined in an extension of Scribble. We hope that the book will serve a useful purpose as a report on the activities of COST Action IC1201 and as a survey of programming languages and tools based on behavioural types

    Behavioural Types

    Get PDF
    Behavioural type systems in programming languages support the specification and verification of properties of programs beyond the traditional use of type systems to describe data processing. A major example of such a property is correctness of communication in concurrent and distributed systems, motivated by the importance of structured communication in modern software. Behavioural Types: from Theory to Tools presents programming languages and software tools produced by members of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems, a European research network that was funded from October 2012 to October 2016. As a survey of the most recent developments in the application of behavioural type systems, it is a valuable reference for researchers in the field, as well as an introduction to the area for graduate students and software developers

    Behavioural Types

    Get PDF
    Behavioural type systems in programming languages support the specification and verification of properties of programs beyond the traditional use of type systems to describe data processing. A major example of such a property is correctness of communication in concurrent and distributed systems, motivated by the importance of structured communication in modern software. Behavioural Types: from Theory to Tools presents programming languages and software tools produced by members of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems, a European research network that was funded from October 2012 to October 2016. As a survey of the most recent developments in the application of behavioural type systems, it is a valuable reference for researchers in the field, as well as an introduction to the area for graduate students and software developers

    Parameterized Concurrent Multi-Party Session Types

    Full text link
    Session types have been proposed as a means of statically verifying implementations of communication protocols. Although prior work has been successful in verifying some classes of protocols, it does not cope well with parameterized, multi-actor scenarios with inherent asynchrony. For example, the sliding window protocol is inexpressible in previously proposed session type systems. This paper describes System-A, a new typing language which overcomes many of the expressiveness limitations of prior work. System-A explicitly supports asynchrony and parallelism, as well as multiple forms of parameterization. We define System-A and show how it can be used for the static verification of a large class of asynchronous communication protocols.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432
    • …
    corecore