3,400 research outputs found

    Music information retrieval: conceptuel framework, annotation and user behaviour

    Get PDF
    Understanding music is a process both based on and influenced by the knowledge and experience of the listener. Although content-based music retrieval has been given increasing attention in recent years, much of the research still focuses on bottom-up retrieval techniques. In order to make a music information retrieval system appealing and useful to the user, more effort should be spent on constructing systems that both operate directly on the encoding of the physical energy of music and are flexible with respect to users’ experiences. This thesis is based on a user-centred approach, taking into account the mutual relationship between music as an acoustic phenomenon and as an expressive phenomenon. The issues it addresses are: the lack of a conceptual framework, the shortage of annotated musical audio databases, the lack of understanding of the behaviour of system users and shortage of user-dependent knowledge with respect to high-level features of music. In the theoretical part of this thesis, a conceptual framework for content-based music information retrieval is defined. The proposed conceptual framework - the first of its kind - is conceived as a coordinating structure between the automatic description of low-level music content, and the description of high-level content by the system users. A general framework for the manual annotation of musical audio is outlined as well. A new methodology for the manual annotation of musical audio is introduced and tested in case studies. The results from these studies show that manually annotated music files can be of great help in the development of accurate analysis tools for music information retrieval. Empirical investigation is the foundation on which the aforementioned theoretical framework is built. Two elaborate studies involving different experimental issues are presented. In the first study, elements of signification related to spontaneous user behaviour are clarified. In the second study, a global profile of music information retrieval system users is given and their description of high-level content is discussed. This study has uncovered relationships between the users’ demographical background and their perception of expressive and structural features of music. Such a multi-level approach is exceptional as it included a large sample of the population of real users of interactive music systems. Tests have shown that the findings of this study are representative of the targeted population. Finally, the multi-purpose material provided by the theoretical background and the results from empirical investigations are put into practice in three music information retrieval applications: a prototype of a user interface based on a taxonomy, an annotated database of experimental findings and a prototype semantic user recommender system. Results are presented and discussed for all methods used. They show that, if reliably generated, the use of knowledge on users can significantly improve the quality of music content analysis. This thesis demonstrates that an informed knowledge of human approaches to music information retrieval provides valuable insights, which may be of particular assistance in the development of user-friendly, content-based access to digital music collections

    Auditory communication in domestic dogs: vocal signalling in the extended social environment of a companion animal

    Get PDF
    Domestic dogs produce a range of vocalisations, including barks, growls, and whimpers, which are shared with other canid species. The source–filter model of vocal production can be used as a theoretical and applied framework to explain how and why the acoustic properties of some vocalisations are constrained by physical characteristics of the caller, whereas others are more dynamic, influenced by transient states such as arousal or motivation. This chapter thus reviews how and why particular call types are produced to transmit specific types of information, and how such information may be perceived by receivers. As domestication is thought to have caused a divergence in the vocal behaviour of dogs as compared to the ancestral wolf, evidence of both dog–human and human–dog communication is considered. Overall, it is clear that domestic dogs have the potential to acoustically broadcast a range of information, which is available to conspecific and human receivers. Moreover, dogs are highly attentive to human speech and are able to extract speaker identity, emotional state, and even some types of semantic information

    THE CHILD AND THE WORLD: How Children acquire Language

    Get PDF
    HOW CHILDREN ACQUIRE LANGUAGE Over the last few decades research into child language acquisition has been revolutionized by the use of ingenious new techniques which allow one to investigate what in fact infants (that is children not yet able to speak) can perceive when exposed to a stream of speech sound, the discriminations they can make between different speech sounds, differentspeech sound sequences and different words. However on the central features of the mystery, the extraordinarily rapid acquisition of lexicon and complex syntactic structures, little solid progress has been made. The questions being researched are how infants acquire and produce the speech sounds (phonemes) of the community language; how infants find words in the stream of speech; and how they link words to perceived objects or action, that is, discover meanings. In a recent general review in Nature of children's language acquisition, Patricia Kuhl also asked why we do not learn new languages as easily at 50 as at 5 and why computers have not cracked the human linguistic code. The motor theory of language function and origin makes possible a plausible account of child language acquisition generally from which answers can be derived also to these further questions. Why computers so far have been unable to 'crack' the language problem becomes apparent in the light of the motor theory account: computers can have no natural relation between words and their meanings; they have no conceptual store to which the network of words is linked nor do they have the innate aspects of language functioning - represented by function words; computers have no direct links between speech sounds and movement patterns and they do not have the instantly integrated neural patterning underlying thought - they necessarily operate serially and hierarchically. Adults find the acquisition of a new language much more difficult than children do because they are already neurally committed to the link between the words of their first language and the elements in their conceptual store. A second language being acquired by an adult is in direct competition for neural space with the network structures established for the first language

    Singing Voice Recognition for Music Information Retrieval

    Get PDF
    This thesis proposes signal processing methods for analysis of singing voice audio signals, with the objectives of obtaining information about the identity and lyrics content of the singing. Two main topics are presented, singer identification in monophonic and polyphonic music, and lyrics transcription and alignment. The information automatically extracted from the singing voice is meant to be used for applications such as music classification, sorting and organizing music databases, music information retrieval, etc. For singer identification, the thesis introduces methods from general audio classification and specific methods for dealing with the presence of accompaniment. The emphasis is on singer identification in polyphonic audio, where the singing voice is present along with musical accompaniment. The presence of instruments is detrimental to voice identification performance, and eliminating the effect of instrumental accompaniment is an important aspect of the problem. The study of singer identification is centered around the degradation of classification performance in presence of instruments, and separation of the vocal line for improving performance. For the study, monophonic singing was mixed with instrumental accompaniment at different signal-to-noise (singing-to-accompaniment) ratios and the classification process was performed on the polyphonic mixture and on the vocal line separated from the polyphonic mixture. The method for classification including the step for separating the vocals is improving significantly the performance compared to classification of the polyphonic mixtures, but not close to the performance in classifying the monophonic singing itself. Nevertheless, the results show that classification of singing voices can be done robustly in polyphonic music when using source separation. In the problem of lyrics transcription, the thesis introduces the general speech recognition framework and various adjustments that can be done before applying the methods on singing voice. The variability of phonation in singing poses a significant challenge to the speech recognition approach. The thesis proposes using phoneme models trained on speech data and adapted to singing voice characteristics for the recognition of phonemes and words from a singing voice signal. Language models and adaptation techniques are an important aspect of the recognition process. There are two different ways of recognizing the phonemes in the audio: one is alignment, when the true transcription is known and the phonemes have to be located, other one is recognition, when both transcription and location of phonemes have to be found. The alignment is, obviously, a simplified form of the recognition task. Alignment of textual lyrics to music audio is performed by aligning the phonetic transcription of the lyrics with the vocal line separated from the polyphonic mixture, using a collection of commercial songs. The word recognition is tested for transcription of lyrics from monophonic singing. The performance of the proposed system for automatic alignment of lyrics and audio is sufficient for facilitating applications such as automatic karaoke annotation or song browsing. The word recognition accuracy of the lyrics transcription from singing is quite low, but it is shown to be useful in a query-by-singing application, for performing a textual search based on the words recognized from the query. When some key words in the query are recognized, the song can be reliably identified

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA) came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the newborn to the adult and elderly. Over the years the initial issues have grown and spread also in other fields of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years in Firenze, Italy. This edition celebrates twenty-two years of uninterrupted and successful research in the field of voice analysis

    Content-based music classification, summarization and retrieval

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Conference Proceedings of the Euroregio / BNAM 2022 Joint Acoustic Conference

    Get PDF

    iHear – Lightweight Machine Learning Engine with Context Aware Audio Recognition Model

    Get PDF
    Title from PDF of title page, viewed on October 24, 2016Thesis advisor: Yugyung LeeVitaIncludes bibliographical references (pages 89-91)Thesis (M.S.)--Department of Computing and Engineering. University of Missouri--Kansas City, 2016With the increasing popularity and affordability of smartphones, there is a high demand to add machine-learning engines to smartphones. However, Machine Learning with smartphones is typically not feasible due to the heavy loaded computation required for processing large-scale data with Machine Learning. The conventional Machine Learning systems do not naturally or efficiently support some very important features for large-scale stream data. To overcome these limitations, we propose the iHear engine that aims to support lightweight Machine Learning through a collaboration between cloud and smartphones. The contributions of this thesis are summarized as follows: 1) The iHear system architecture for achieving high performance with parallel and distributed learning by separating cloud-based learning from smartphone-based recognition 2) The context-aware model for improvement of the accuracy and efficiency in audio recognition and sound enhancement 3) Audio recognition with real-time data preserving data consistency. 4) An intelligent hearing app for IOS devices developed for effective and dynamic audio recognition and enhancement depending upon users’ context for providing better hearing experiences. The efficiency and effectiveness of the iHear engine in terms of its continuous learning capability were evaluated on an Apache Spark (MLlib) with audio recognition and filtering of streaming data. We conducted experiments with multiple contexts of household traffic, offices, emergencies, and nature with real data collected from smartphones. Our experimental results show that the proposed framework for lightweight Machine Learning with the context aware model are very effective and efficient in terms of real time processing with a high accuracy rate of 90%, which is 20% higher than traditional approaches.Introduction -- Background and related work -- Proposed framework -- Implementation and experiment setup -- Evaluations -- Conclusion and future wor
    corecore