90 research outputs found

    DEVELOPMENT OF A SOFT PNEUMATIC ACTUATOR FOR MODULAR ROBOTIC MECHANISMS

    Get PDF
    Soft robotics is a widely and rapidly growing field of research today. Soft pneumatic actuators, as a fundamental element in soft robotics, have gained huge popularity and are being employed for the development of soft robots. During the last decade, a variety of hyper-elastic robotic systems have been realized. As the name suggests, such robots are made up of soft materials, and do not have any underlying rigid mechanical structure. These robots are actuated employing various methods like pneumatic, electroactive, jamming etc. Generally, in order to achieve a desired mechanical response to produce required actuation or manipulation, two or more materials having different stiffness are utilized to develop a soft robot. However, this method introduces complications in the fabrication process as well as in further design flexibility and modifications. The current work presents a design scheme of a soft robotic actuator adapting an easier fabrication approach, which is economical and environment friendly as well. The purpose is the realization of a soft pneumatic actuator having functional ability to produce effective actuation, and which is further employable to develop modular and scalable mechanisms. That infers to scrutinize the profile and orientation of the internal actuation cavity and the outer shape of viii the actuator. Utilization of a single material for this actuator has been considered to make this design scheme convenient. A commercial silicone rubber was selected which served for an economical process both in terms of the cost as well as its accommodating fabrication process through molding. In order to obtain the material behavior, \u2018Ansys Workbench 17.1 R \u2019 has been used. Cubic outline for the actuator aided towards the realization of a body shape which can easily be engaged for the development of modular mechanisms employing multiple units. This outer body shape further facilitates to achieve the stability and portability of the actuator. The soft actuator has been named \u2018Soft Cubic Module\u2019 based on its external cubic shape. For the internal actuation cavity design, various shapes, such as spherical, elliptical and cylindrical, were examined considering their different sizes and orientations within the cubic module. These internal cavities were simulated in order to achieve single degree of freedom actuation. That means, only one face of the cube is principally required to produce effective deformation. \u2018Creo Perametric 3.0 M 130\u2019 has been used to design the model and to evaluate the performance of actuation cavities in terms of effective deformation and the resulting von-mises stress. Out of the simulated profiles, cylindrical cavity with desired outcomes has been further considered to design the soft actuator. \u2018Ansys Workbench 17.1 R \u2019 environment was further used to assess the performance of cylindrical actuation cavity. Evaluation in two different simulation environments helped to validate the initially achieved results. The developed soft cubic actuator was then employed to develop different mechanisms in a single unit configuration as well as multi-unit robotic system developments. This design scheme is considered as the first tool to investigate its capacity to perform certain given tasks in various configurations. Alongside its application as a single unit gripper and a two unit bio-mimetic crawling mechanism, this soft actuator has been employed to realize a four degree ix of freedom robotic mechanism. The formation of this primitive soft robotic four axis mechanism is being further considered to develop an equivalent mechanism similar to the well known Stewart platform, with advantages of compactness, simpler kinematics design, easier control, and lesser cost. Overall, the accomplished results indicate that the design scheme of Soft Cubic Module is helpful in realizing a simple and cost-effective soft pneumatic actuator which is modular and scalable. Another favourable point of this scheme is the use of a single material with convenient fabrication and handling

    RESEARCH TOWARDS THE DESIGN OF A NOVEL SMART FLUID DAMPER USING A MCKIBBEN ACTUATOR

    Get PDF
    Vibration reducing performance of many mechanical systems, decreasing the quality of manufactured products, producing noise, generating fatigue in mechanical components, and producing an uncomfortable environment for human bodies. Vibration control is categorized as: active, passive, or semi-active, based on the power consumption of the control system and feedback or feed forward based on whether sensing is used to control vibration. Semi-active vibration control is the most attractive method; one method of semi-active vibration control could be designed by using smart fluid. Smart fluids are able to modify their effective viscosity in response to an external stimulus such as a magnetic field. This unique characteristic can be utilised to build semi-active dampers for a wide variety of vibration control systems. Previous work has studied the application of smart fluids in semi-active dampers, where the kinetic energy of a vibrating structure can be dissipated in a controllable fashion. A McKibben actuator is a device that consists of a rubber tube surrounded by braided fibre material. It has different advantages over a piston/cylinder actuator such as: a high power to weight ratio, low weight and less cost. Recently McKibben actuator has appeared in some semi-active vibration control devise. This report investigates the possibility of designing a Magnetorheological MR damper that seeks to reduce the friction in the device by integrating it with a McKibben actuator. In this thesis the concept of both smart fluid and McKibben actuator have been reviewed in depth, and methods of modelling and previous applications of devices made using these materials are also presented. The experimental part of the research includes: designing and modelling a McKibben actuator (using water) under static loads, and validating the model experimentally. The research ends by presenting conclusions and future work

    High Fidelity Dynamic Modeling and Nonlinear Control of Fluidic Artificial Muscles

    Get PDF
    A fluidic artificial muscle is a type of soft actuator. Soft actuators transmit power with elastic or hyper-elastic bladders that are deformed with a pressurized fluid. In a fluidic artificial muscle a rubber tube is encompassed by a helical fiber braid with caps on both ends. One of the end caps has an orifice, allowing the control of fluid flow in and out of the device. As the actuator is pressurized, the rubber tube expands radially and is constrained by the helical fiber braid. This constraint results in a contractile motion similar to that of biological muscles. Although artificial muscles have been extensively studied, physics-based models do not exist that predict theirmotion.This dissertation presents a new comprehensive lumped-parameter dynamic model for both pneumatic and hydraulic artificial muscles. It includes a tube stiffness model derived from the theory of large deformations, thin wall pressure vessel theory, and a classical artificial muscle force model. Furthermore, it incorporates models for the kinetic friction and braid deformation. The new comprehensive dynamic model is able to accurately predict the displacement of artificial muscles as a function of pressure. On average, the model can predict the quasi-static position of the artificial muscles within 5% error and the dynamic displacement within 10% error with respect to the maximum stroke. Results show the potential utility of the model in mechanical system design and control design. Applications include wearable robots, mobile robots, and systems requiring compact, powerful actuation.The new model was used to derive sliding mode position and impedance control laws. The accuracy of the controllers ranged from ± 6 µm to ± 50 µm, with respect to a 32 mm and 24 mm stroke artificial muscles, respectively. Tracking errors were reduced by 59% or more when using the high-fidelity model sliding mode controller compared to classical methods. The newmodel redefines the state-of-the-art in controller performance for fluidic artificial muscles

    Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation

    Get PDF
    Abstract We describe the design and control of a wearable robotic device powered by pneumatic artificial muscle actuators for use in ankle-foot rehabilitation. The design is inspired by the biological musculoskeletal system of the human foot and lower leg, mimicking the morphology and the functionality of the biological muscle-tendon-ligament structure. A key feature of the device is its soft structure that provides active assistance without restricting natural degrees of freedom at the ankle joint. Four pneumatic artificial muscles assist dorsiflexion and plantarflexion as well as inversion and eversion. The prototype is also equipped with various embedded sensors for gait pattern analysis. For the subject tested, the prototype is capable of generating an ankle range of motion of 27 • (14 • dorsiflexion and 13 • plantarflexion). The controllability of the system is experimentally demonstrated using a linear time-invariant (LTI) controller. The controller is found using an identified LTI model of the system, resulting from the interaction of the soft orthotic device with a human leg, and model-based classical control design techniques. The suitability of the proposed control strategy is demonstrated with several angle-reference following experiments

    Towards a Universal Modeling and Control Framework for Soft Robots

    Full text link
    Traditional rigid-bodied robots are designed for speed, precision, and repeatability. These traits make them well suited for highly structured industrial environments, but poorly suited for the unstructured environments in which humans typically operate. Soft robots are well suited for unstructured human environments because they them to can safely interact with delicate objects, absorb impacts without damage, and passively adapt their shape to their surroundings. This makes them ideal for applications that require safe robot-human interaction, but also presents modeling and control challenges. Unlike rigid-bodied robots, soft robots exhibit continuous deformation and coupling between structure and actuation and these behaviors are not readily captured by traditional robot modeling and control techniques except under restrictive simplifying assumptions. The contribution of this work is a modeling and control framework tailored specifically to soft robots. It consists of two distinct modeling approaches. The first is a physics-based static modeling approach for systems of fluid-driven actuators. This approach leverages geometric relationships and conservation of energy to derive models that are simple and accurate enough to inform the design of soft robots, but not accurate enough to inform their control. The second is a data-driven dynamical modeling approach for arbitrary (soft) robotic systems. This approach leverages Koopman operator theory to construct models that are accurate and computationally efficient enough to be integrated into closed-loop optimal control schemes. The proposed framework is applied to several real-world soft robotic systems, enabling the successful completion of control tasks such as trajectory following and manipulating objects of unknown mass. Since the framework is not robot specific, it has the potential to become the dominant paradigm for the modeling and control of soft robots and lead to their more widespread adoption.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163062/1/bruderd_1.pd

    Modellbasierte Kraftregelung einer mit pneumatischen Muskeln angetriebenen Parallelplatform

    Get PDF
    In the present work, a force and torque controlled Gough-Stewart type parallel platform driven by six actuator legs was developed and evaluated. Each actuator consists of a fluidic muscle which is combined with a prestressed coil spring in order to produce compressive as well as tensile forces. The platform shall be controlled such that arbitrary force functions can be simulated. Through geometric limit analyses, it was verified that the workspace of the mobile platform suffices to the required motion range. The model-based force control of each actuator uses an exponential approximation of the transient pressure responses. The six actuator control loops are embedded into the force and torque control of the parallel manipulator. The platform-control algorithm includes a kinetostatic platform model, which com-putes the corresponding required leg forces in order to achieve the target forces and torques at the end effector of the platform. It was shown that the target end-effector forces and torques, which do not pursue rapid changes, can be produced effectively with the developed parallel manipulator and the established platform control. The steady-state performance of the developed control algorithm sufficed to the requirements of a fine-tuned force and torque control. The manipulator was designed for its future application as a physical simulator of cervical spine motion for assessing effects of, e.g., implants, surgical treatments, etc.Die vorliegende Arbeit befasst sich mit der Entwicklung und Evaluierung einer kraftgeregelten Gough-Stewart Parallelplattform, die von sechs Aktoren angetrieben wird. Die Aktoren bestehen jeweils aus einem pneumatischen Muskel und einer vorgespannten Druckfeder. Die Plattform wird so geregelt, dass beliebige Kraft- und Momentenverläufe erstellt werden können. Durch die geometrische Analyse der Endlagen wurde verifiziert, dass der geforderte Arbeitsraum durch die Plattform erreicht werden kann. Jeder einzelne Aktor wird durch eine modellbasierte Kraftregelung kontrolliert, die unter anderem die Druckbeaufschlagung eines pneumatischen Muskels durch exponentielle Funktionen annähert. Die sechs Regelschleifen der Aktoren sind der Kraft- und Momentenregelung der Parallelplattform untergeordnet. Die Plattformregelung benutzt das kinetostatische Modell der Plattform und berechnet die jeweiligen Aktorkräfte, die zum Erreichen der aktuellen Sollkraft und Sollmomentes an der Plattform notwendig sind. Es wurde gezeigt, dass die geforderten Zielkräfte und Momente effektiv mit der kraftgeregelten Plattform produziert werden können und im stationären Bereich der Sprungantworten eine genaue Kraftregelung möglich ist. Die Parallelplattform wurde konzipiert für ihre zukünftige Anwendung als physikalischer Simulator der menschlichen Halswirbelsäule, unter anderem für die präoperative Analyse chirurgischer Eingriffe, Implantate etc

    Long-Legged Hexapod Giacometti Robot Using Thin Soft McKibben Actuator

    Get PDF
    This letter introduces a lightweight hexapod robot, Giacometti robot, made with long and narrow legs following the Alberto Giacometti's sculpture conception. The goal is achieved by, first, using multiple links with thin and soft McKibben actuators, and second, choosing a leg design which is narrow in comparison to its body's length and height, unlike conventional robot design. By such design characteristic, the leg will exhibit elastic deformations due to the low stiffness property of the thin link structure. Then, we model the leg structure and conduct the deflection analysis to confirm the capability of the leg to perform walking motion. The high force to weight ratio characteristics of the actuator provided the ability to drive the system, as shown by a static model and further validated experimentally. To compensate for the high elastic structural flexibility of the legs, two walking gaits namely customized Wave gait and Giacometti gait were introduced. The robot could walk successfully with both gaits at maximum speed of 0.005 and 0.05 m/s, respectively. It is envisaged that the lightweight Giacometti robot design can be very useful in legged robotic exploration

    Inherently Elastic Actuation for Soft Robotics

    Get PDF
    corecore