2,311 research outputs found

    Static and Dynamic Vector Semantics for Lambda Calculus Models of Natural Language

    Get PDF
    To appear in Journal of Language Modelling. Short versions presented in DSALT 2016, SaLMoM 2016, LACL 2016. A version presented in AC 2017To appear in Journal of Language Modelling. Short versions presented in DSALT 2016, SaLMoM 2016, LACL 2016. A version presented in AC 2017To appear in Journal of Language Modelling. Short versions presented in DSALT 2016, SaLMoM 2016, LACL 2016. A version presented in AC 2017Vector models of language are based on the contextual aspects of language, the distributions of words and how they co-occur in text. Truth conditional models focus on the logical aspects of language, compositional properties of words and how they compose to form sentences. In the truth conditional approach, the denotation of a sentence determines its truth conditions, which can be taken to be a truth value, a set of possible worlds, a context change potential, or similar. In the vector models, the degree of co-occurrence of words in context determines how similar the meanings of words are. In this paper, we put these two models together and develop a vector semantics for language based on the simply typed lambda calculus models of natural language. We provide two types of vector semantics: a static one that uses techniques familiar from the truth conditional tradition and a dynamic one based on a form of dynamic interpretation inspired by Heim's context change potentials. We show how the dynamic model can be applied to entailment between a corpus and a sentence and we provide examples

    Context Update for Lambdas and Vectors

    Get PDF
    Vector models of language are based on the contextual aspects of words and how they co-occur in text. Truth conditional models focus on the logical aspects of language, the denotations of phrases, and their compositional properties. In the latter approach the denotation of a sentence determines its truth conditions and can be taken to be a truth value, a set of possible worlds, a context change potential, or similar. In this short paper, we develop a vector semantics for language based on the simply typed lambda calculus. Our semantics uses techniques familiar from the truth conditional tradition and is based on a form of dynamic interpretation inspired by Heim's context updates

    Density Matrices with Metric for Derivational Ambiguity

    Get PDF
    Recent work on vector-based compositional natural language semantics has proposed the use of density matrices to model lexical ambiguity and (graded) entailment (e.g. Piedeleu et al 2015, Bankova et al 2019, Sadrzadeh et al 2018). Ambiguous word meanings, in this work, are represented as mixed states, and the compositional interpretation of phrases out of their constituent parts takes the form of a strongly monoidal functor sending the derivational morphisms of a pregroup syntax to linear maps in FdHilb. Our aims in this paper are threefold. Firstly, we replace the pregroup front end by a Lambek categorial grammar with directional implications expressing a word's selectional requirements. By the Curry-Howard correspondence, the derivations of the grammar's type logic are associated with terms of the (ordered) linear lambda calculus; these terms can be read as programs for compositional meaning assembly with density matrices as the target semantic spaces. Secondly, we extend on the existing literature and introduce a symmetric, nondegenerate bilinear form called a "metric" that defines a canonical isomorphism between a vector space and its dual, allowing us to keep a distinction between left and right implication. Thirdly, we use this metric to define density matrix spaces in a directional form, modeling the ubiquitous derivational ambiguity of natural language syntax, and show how this alows an integrated treatment of lexical and derivational forms of ambiguity controlled at the level of the interpretation.Comment: 24 pages, 10 figures. SemSpace 2019, to appear in J. of Applied Logic

    Monoidal computer III: A coalgebraic view of computability and complexity

    Full text link
    Monoidal computer is a categorical model of intensional computation, where many different programs correspond to the same input-output behavior. The upshot of yet another model of computation is that a categorical formalism should provide a much needed high level language for theory of computation, flexible enough to allow abstracting away the low level implementation details when they are irrelevant, or taking them into account when they are genuinely needed. A salient feature of the approach through monoidal categories is the formal graphical language of string diagrams, which supports visual reasoning about programs and computations. In the present paper, we provide a coalgebraic characterization of monoidal computer. It turns out that the availability of interpreters and specializers, that make a monoidal category into a monoidal computer, is equivalent with the existence of a *universal state space*, that carries a weakly final state machine for any pair of input and output types. Being able to program state machines in monoidal computers allows us to represent Turing machines, to capture their execution, count their steps, as well as, e.g., the memory cells that they use. The coalgebraic view of monoidal computer thus provides a convenient diagrammatic language for studying computability and complexity.Comment: 34 pages, 24 figures; in this version: added the Appendi

    10252 Abstracts Collection -- Game Semantics and Program Verification

    Get PDF
    From 20th to 25th June 2010, the Dagstuhl Seminar "Game Semantics and Program Verification\u27\u27 was held in Schloss Dagstuhl - Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • …
    corecore