4,931 research outputs found

    COLLADA + MPEG-4 or X3D + MPEG-4

    Full text link
    The paper is an overview of 3D graphics assets and applications standards.The authors analyzed the three main open standards dealing with three-dimensional (3-D) graphics content and applications, X3D, COLLADA, and MPEG4, to clarify the role of each with respect to the following criteria: ability to describe only the graphics assets in a synthetic 3-D scene or also its behavior as an application, compression capacities, and appropriateness for authoring, transmission, and publishing. COLLADA could become the interchange format for authoring tools; MPEG4 on top of it (as specified in MPEG-4 Part 25), the publishing format for graphics assets; and X3D, the standard for interactive applications, enriched by MPEG-4 compression in the case of online ones. The authors also mentioned that in order to build a mobile application, a developer has to consider different hardware configurations and performances, different operating systems, different screen sizes, and input controls

    Development of Web-based Interactive Map Using Object-Oriented Programming Concept

    Get PDF
    The program incorporates an interactive map which responds to origin and destination selection, by analyzing the relative positions of both locations and creating real-time routes on the road network to display to the user the required path from the origin to the destination and the approximate distance/time required. System design is based on the Model- View-Controller (MVC) design pattern, and the application has been developed using Adobe Flash CS3 (with ActionScrip

    Predictive CDN Selection for Video Delivery Based on LSTM Network Performance Forecasts and Cost-Effective Trade-Offs

    Get PDF
    Owing to increasing consumption of video streams and demand for higher quality content and more advanced displays, future telecommunication networks are expected to outperform current networks in terms of key performance indicators (KPIs). Currently, content delivery networks (CDNs) are used to enhance media availability and delivery performance across the Internet in a cost-effective manner. The proliferation of CDN vendors and business models allows the content provider (CP) to use multiple CDN providers simultaneously. However, extreme concurrency dynamics can affect CDN capacity, causing performance degradation and outages, while overestimated demand affects costs. 5G standardization communities envision advanced network functions executing video analytics to enhance or boost media services. Network accelerators are required to enforce CDN resilience and efficient utilization of CDN assets. In this regard, this study investigates a cost-effective service to dynamically select the CDN for each session and video segment at the Media Server, without any modification to the video streaming pipeline being required. This service performs time series forecasts by employing a Long Short-Term Memory (LSTM) network to process real time measurements coming from connected video players. This service also ensures reliable and cost-effective content delivery through proactive selection of the CDN that fits with performance and business constraints. To this end, the proposed service predicts the number of players that can be served by each CDN at each time; then, it switches the required players between CDNs to keep the (Quality of Service) QoS rates or to reduce the CP's operational expenditure (OPEX). The proposed solution is evaluated by a real server, CDNs, and players and delivering dynamic adaptive streaming over HTTP (MPEG-DASH), where clients are notified to switch to another CDN through a standard MPEG-DASH media presentation description (MPD) update mechanismThis work was supported in part by the EC projects Fed4Fire+, under Grant 732638 (H2020-ICT-13-2016, Research and Innovation Action), and in part by Open-VERSO project (Red Cervera Program, Spanish Government's Centre for the Development of Industrial Technology

    The multi-faceted use of the OAI-PMH in the LANL Repository

    Get PDF
    This paper focuses on the multifaceted use of the OAI-PMH in a repository architecture designed to store digital assets at the Research Library of the Los Alamos National Laboratory (LANL), and to make the stored assets available in a uniform way to various downstream applications. In the architecture, the MPEG-21 Digital Item Declaration Language is used as the XML-based format to represent complex digital objects. Upon ingestion, these objects are stored in a multitude of autonomous OAI-PMH repositories. An OAI-PMH compliant Repository Index keeps track of the creation and location of all those repositories, whereas an Identifier Resolver keeps track of the location of individual objects. An OAI-PMH Federator is introduced as a single-point-of-access to downstream harvesters. It hides the complexity of the environment to those harvesters, and allows them to obtain transformations of stored objects. While the proposed architecture is described in the context of the LANL library, the paper will also touch on its more general applicability

    The growing complexity of content delivery networks: Challenges and implications for the Internet ecosystem

    Get PDF
    Since the commercialization of the Internet, content and related applications, including video streaming, news, advertisements, and social interaction have moved online. It is broadly recognized that the rise of all of these different types of content (static and dynamic, and increasingly multimedia) has been one of the main forces behind the phenomenal growth of the Internet, and its emergence as essential infrastructure for how individuals across the globe gain access to the content sources they want. To accelerate the delivery of diverse content in the Internet and to provide commercial-grade performance for video delivery and the Web, Content Delivery Networks (CDNs) were introduced. This paper describes the current CDN ecosystem and the forces that have driven its evolution. We outline the different CDN architectures and consider their relative strengths and weaknesses. Our analysis highlights the role of location, the growing complexity of the CDN ecosystem, and their relationship to and implications for interconnection markets.EC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNe

    Provider-Controlled Bandwidth Management for HTTP-based Video Delivery

    Get PDF
    Over the past few years, a revolution in video delivery technology has taken place as mobile viewers and over-the-top (OTT) distribution paradigms have significantly changed the landscape of video delivery services. For decades, high quality video was only available in the home via linear television or physical media. Though Web-based services brought video to desktop and laptop computers, the dominance of proprietary delivery protocols and codecs inhibited research efforts. The recent emergence of HTTP adaptive streaming protocols has prompted a re-evaluation of legacy video delivery paradigms and introduced new questions as to the scalability and manageability of OTT video delivery. This dissertation addresses the question of how to enable for content and network service providers the ability to monitor and manage large numbers of HTTP adaptive streaming clients in an OTT environment. Our early work focused on demonstrating the viability of server-side pacing schemes to produce an HTTP-based streaming server. We also investigated the ability of client-side pacing schemes to work with both commodity HTTP servers and our HTTP streaming server. Continuing our client-side pacing research, we developed our own client-side data proxy architecture which was implemented on a variety of mobile devices and operating systems. We used the portable client architecture as a platform for investigating different rate adaptation schemes and algorithms. We then concentrated on evaluating the network impact of multiple adaptive bitrate clients competing for limited network resources, and developing schemes for enforcing fair access to network resources. The main contribution of this dissertation is the definition of segment-level client and network techniques for enforcing class of service (CoS) differentiation between OTT HTTP adaptive streaming clients. We developed a segment-level network proxy architecture which works transparently with adaptive bitrate clients through the use of segment replacement. We also defined a segment-level rate adaptation algorithm which uses download aborts to enforce CoS differentiation across distributed independent clients. The segment-level abstraction more accurately models application-network interactions and highlights the difference between segment-level and packet-level time scales. Our segment-level CoS enforcement techniques provide a foundation for creating scalable managed OTT video delivery services

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results
    corecore