76,037 research outputs found

    A template-based approach for the generation of abstractable and reducible models of featured networks

    Get PDF
    We investigate the relationship between symmetry reduction and inductive reasoning when applied to model checking networks of featured components. Popular reduction techniques for combatting state space explosion in model checking, like abstraction and symmetry reduction, can only be applied effectively when the natural symmetry of a system is not destroyed during specification. We introduce a property which ensures this is preserved, open symmetry. We describe a template-based approach for the construction of open symmetric Promela specifications of featured systems. For certain systems (safely featured parameterised systems) our generated specifications are suitable for conversion to abstract specifications representing any size of network. This enables feature interaction analysis to be carried out, via model checking and induction, for systems of any number of featured components. In addition, we show how, for any balanced network of components, by using a graphical representation of the features and the process communication structure, a group of permutations of the underlying state space of the generated specification can be determined easily. Due to the open symmetry of our Promela specifications, this group of permutations can be used directly for symmetry reduced model checking. The main contributions of this paper are an automatic method for developing open symmetric specifications which can be used for generic feature interaction analysis, and the novel application of symmetry detection and reduction in the context of model checking featured networks. We apply our techniques to a well known example of a featured network – an email system

    Probabilistic Model Checking for Energy Analysis in Software Product Lines

    Full text link
    In a software product line (SPL), a collection of software products is defined by their commonalities in terms of features rather than explicitly specifying all products one-by-one. Several verification techniques were adapted to establish temporal properties of SPLs. Symbolic and family-based model checking have been proven to be successful for tackling the combinatorial blow-up arising when reasoning about several feature combinations. However, most formal verification approaches for SPLs presented in the literature focus on the static SPLs, where the features of a product are fixed and cannot be changed during runtime. This is in contrast to dynamic SPLs, allowing to adapt feature combinations of a product dynamically after deployment. The main contribution of the paper is a compositional modeling framework for dynamic SPLs, which supports probabilistic and nondeterministic choices and allows for quantitative analysis. We specify the feature changes during runtime within an automata-based coordination component, enabling to reason over strategies how to trigger dynamic feature changes for optimizing various quantitative objectives, e.g., energy or monetary costs and reliability. For our framework there is a natural and conceptually simple translation into the input language of the prominent probabilistic model checker PRISM. This facilitates the application of PRISM's powerful symbolic engine to the operational behavior of dynamic SPLs and their family-based analysis against various quantitative queries. We demonstrate feasibility of our approach by a case study issuing an energy-aware bonding network device.Comment: 14 pages, 11 figure

    Laser-controlled fluorescence in two-level systems

    Get PDF
    The ability to modify the character of fluorescent emission by a laser-controlled, optically nonlinear process has recently been shown theoretically feasible, and several possible applications have already been identified. In operation, a pulse of off-resonant probe laser beam, of sufficient intensity, is applied to a system exhibiting fluorescence, during the interval of excited- state decay following the initial excitation. The result is a rate of decay that can be controllably modified, the associated changes in fluorescence behavior affording new, chemically specific information. In this paper, a two-level emission model is employed in the further analysis of this all-optical process; the results should prove especially relevant to the analysis and imaging of physical systems employing fluorescent markers, these ranging from quantum dots to green fluorescence protein. Expressions are presented for the laser-controlled fluorescence anisotropy exhibited by samples in which the fluorophores are randomly oriented. It is also shown that, in systems with suitably configured electronic levels and symmetry properties, fluorescence emission can be produced from energy levels that would normally decay nonradiatively. © 2010 American Chemical Society

    Global-to-local incompatibility, monogamy of entanglement, and ground-state dimerization: Theory and observability of quantum frustration in systems with competing interactions

    Full text link
    Frustration in quantum many body systems is quantified by the degree of incompatibility between the local and global orders associated, respectively, to the ground states of the local interaction terms and the global ground state of the total many-body Hamiltonian. This universal measure is bounded from below by the ground-state bipartite block entanglement. For many-body Hamiltonians that are sums of two-body interaction terms, a further inequality relates quantum frustration to the pairwise entanglement between the constituents of the local interaction terms. This additional bound is a consequence of the limits imposed by monogamy on entanglement shareability. We investigate the behavior of local pair frustration in quantum spin models with competing interactions on different length scales and show that valence bond solids associated to exact ground-state dimerization correspond to a transition from generic frustration, i.e. geometric, common to classical and quantum systems alike, to genuine quantum frustration, i.e. solely due to the non-commutativity of the different local interaction terms. We discuss how such frustration transitions separating genuinely quantum orders from classical-like ones are detected by observable quantities such as the static structure factor and the interferometric visibility.Comment: 11 pages, 7 figures. Matches published versio

    Controlling the localization and migration of optical excitation

    Get PDF
    In the nanoscale structure of a wide variety of material systems, a close juxtaposition of optically responsive components can lead to the absorption of light by one species producing fluorescence that is clearly attributable to another. The effect is generally evident in systems comprising two or more light-absorbing components (molecules, chromophores or quantum dots) with well-characterised fluorescence bands at similar, differentiable wavelengths. This enables the fluorescence associated with transferred energy to be discriminated against fluorescence from an initially excited component. The fundamental mechanism at the heart of the phenomenon, molecular (resonance) energy transfer, also operates in systems where the product of optical absorption is optical frequency up-conversion. In contrast to random media, structurally organised materials offer the possibility of pre-configured control over the delocalization of energy, through molecular energy transfer following optical excitation. The Förster mechanism that conveys energy between molecular-scale components is strongly sensitive to specific forms of correlation between the involved components, in terms of position, spectroscopic character, and orientation; one key factor is a spectroscopic gradient. Suitably designed materials offer a broad scope for the widespread exploitation of such features, in applications ranging from chemical and biological sensing to the detection of nanoscale motion or molecular conformations. Recently, attention has turned to the prospect of actively controlling the process of energy migration, for example by changing the relative efficiencies of fluorescence and molecular energy transfer. On application of static electric fields or off-resonant laser light - just two of the possibilities - each represents a means for achieving active control with ultrafast response, in suitably configured systems. As the principles are established and the theory is developed, a range of new possibilities for technical application is emerging. For example, applications can be envisaged for new forms of all-optical switching and transistor action. There is also interest in engaging with the interplay of optical excitation and local nanoscale force, exploiting local responses to changes in dispersion forces, accompanying molecular energy transfer
    corecore