357 research outputs found

    A component-oriented programming framework for developing embedded mobile robot software using PECOS model

    Get PDF
    A practical framework for component-based software engineering of embedded real-time systems, particularly for autonomous mobile robot embedded software development using PECOS component model is proposed The main features of this framework are: (1) use graphical representation for components definition and composition; (2) target C language for optimal code generation with small micro-controller; and (3) does not requires run-time support except for real-time kernel. Real-time implementation indicates that, the PECOS component model together with the proposed framework is suitable for resource constrained embedded systems

    Model for WCET prediction, scheduling and task allocation for emergent agent-behaviours in real-time scenarios

    Get PDF
    [ES]Hasta el momento no se conocen modelos de tiempo real específicamente desarrollados para su uso en sistemas abiertos, como las Organizaciones Virtuales de Agentes (OVs). Convencionalmente, los modelos de tiempo real se aplican a sistemas cerrados donde todas las variables se conocen a priori. Esta tesis presenta nuevas contribuciones y la novedosa integración de agentes en tiempo real dentro de OVs. Hasta donde alcanza nuestro conocimiento, éste es el primer modelo específicamente diseñado para su aplicación en OVs con restricciones temporales estrictas. Esta tesis proporciona una nueva perspectiva que combina la apertura y dinamicidad necesarias en una OV con las restricciones de tiempo real. Ésto es una aspecto complicado ya que el primer paradigma no es estricto, como el propio término de sistema abierto indica, sin embargo, el segundo paradigma debe cumplir estrictas restricciones. En resumen, el modelo que se presenta permite definir las acciones que una OV debe llevar a cabo con un plazo concreto, considerando los cambios que pueden ocurrir durante la ejecución de un plan particular. Es una planificación de tiempo real en una OV. Otra de las principales contribuciones de esta tesis es un modelo para el cálculo del tiempo de ejecución en el peor caso (WCET). La propuesta es un modelo efectivo para calcular el peor escenario cuando un agente desea formar parte de una OV y para ello, debe incluir sus tareas o comportamientos dentro del sistema de tiempo real, es decir, se calcula el WCET de comportamientos emergentes en tiempo de ejecución. También se incluye una planificación local para cada nodo de ejecución basada en el algoritmo FPS y una distribución de tareas entre los nodos disponibles en el sistema. Para ambos modelos se usan modelos matemáticos y estadísticos avanzados para crear un mecanismo adaptable, robusto y eficiente para agentes inteligentes en OVs. El desconocimiento, pese al estudio realizado, de una plataforma para sistemas abiertos que soporte agentes con restricciones de tiempo real y los mecanismos necesarios para el control y la gestión de OVs, es la principal motivación para el desarrollo de la plataforma de agentes PANGEA+RT. PANGEA+RT es una innovadora plataforma multi-agente que proporciona soporte para la ejecución de agentes en ambientes de tiempo real. Finalmente, se presenta un caso de estudio donde robots heterogéneos colaboran para realizar tareas de vigilancia. El caso de estudio se ha desarrollado con la plataforma PANGEA+RT donde el modelo propuesto está integrado. Por tanto al final de la tesis, con este caso de estudio se obtienen los resultados y conclusiones que validan el modelo

    Program Semantics in Model-Based WCET Analysis: A State of the Art Perspective

    Get PDF
    Advanced design techniques of safety-critical applications use specialized development model based methods. Under this setting, the application exists at several levels of description, as the result of a sequence of transformations. On the positive side, the application is developed in a systematic way, while on the negative side, its high-level semantics may be obfuscated when represented at the lower levels. The application should provide certain functional and non-functional guarantees. When the application is a hard real-time program, such guarantees could be deadlines, thus making the computation of worst-case execution time (WCET) bounds mandatory. This paper overviews, in the context of WCET analysis, what are the existing techniques to extract, express and exploit the program semantics along the model-based development workflow

    Software Structure and WCET Predictability

    Get PDF
    Being able to compute worst-case execution time bounds for tasks of an embedded software system with hard real-time constraints is crucial to ensure the correct (timing) behavior of the overall system. Any means to increase the (static) time predictability of the embedded software are of high interest -- especially due to the ever-growing complexity of such software systems. In this paper we study existing coding proposals and guidelines, such as MISRA-C, and investigate whether they simplify static timing analysis. Furthermore, we investigate how additional knowledge, such as design-level information, can further aid in this process

    Fast, Interactive Worst-Case Execution Time Analysis With Back-Annotation

    Get PDF
    Abstract—For hard real-time systems, static code analysis is needed to derive a safe bound on the worst-case execution time (WCET). Virtually all prior work has focused on the accuracy of WCET analysis without regard to the speed of analysis. The resulting algorithms are often too slow to be integrated into the development cycle, requiring WCET analysis to be postponed until a final verification phase. In this paper we propose interactive WCET analysis as a new method to provide near-instantaneous WCET feedback to the developer during software programming. We show that interactive WCET analysis is feasible using tree-based WCET calculation. The feedback is realized with a plugin for the Java editor jEdit, where the WCET values are back-annotated to the Java source at the statement level. Comparison of this treebased approach with the implicit path enumeration technique (IPET) shows that tree-based analysis scales better with respect to program size and gives similar WCET values. Index Terms—Real time systems, performance analysis, software performance, software reliability, software algorithms, safety I

    ALF - A Language for WCET Flow Analysis

    Get PDF
    Static Worst-Case Execution Time (WCET) analysis derives upper bounds for the execution times of programs. Such bounds are crucial when designing and verifying real-time systems. A key component in static WCET analysis is the flow analysis, which derives bounds on the number of times different code entities can be executed. Examples of flow information derived by a flow analysis are loop bounds and infeasible paths. Flow analysis can be performed on source code, intermediate code, or binary code: for the latter, there is a proliferation of instruction sets. Thus, flow analysis must deal with many code formats. However, the basic flow analysis techniques are more or less the same regardless of the code format. Thus, an interesting option is to define a common code format for flow analysis, which also allows for easy translation from the other formats. Flow analyses for this common format will then be portable, in principle supporting all types of code formats which can be translated to this format. Further, a common format simplifies the development of flow analyses, since only one specific code format needs to be targeted. This paper presents such a common code format, the ALF language (ARTIST2 Language for WCET Flow Analysis)

    Control/Architecture co-design for cyber-physical systems

    Get PDF

    Controlling Concurrent Change - A Multiview Approach Toward Updatable Vehicle Automation Systems

    Get PDF
    The development of SAE Level 3+ vehicles [{SAE}, 2014] poses new challenges not only for the functional development, but also for design and development processes. Such systems consist of a growing number of interconnected functional, as well as hardware and software components, making safety design increasingly difficult. In order to cope with emergent behavior at the vehicle level, thorough systems engineering becomes a key requirement, which enables traceability between different design viewpoints. Ensuring traceability is a key factor towards an efficient validation and verification of such systems. Formal models can in turn assist in keeping track of how the different viewpoints relate to each other and how the interplay of components affects the overall system behavior. Based on experience from the project Controlling Concurrent Change, this paper presents an approach towards model-based integration and verification of a cause effect chain for a component-based vehicle automation system. It reasons on a cross-layer model of the resulting system, which covers necessary aspects of a design in individual architectural views, e.g. safety and timing. In the synthesis stage of integration, our approach is capable of inserting enforcement mechanisms into the design to ensure adherence to the model. We present a use case description for an environment perception system, starting with a functional architecture, which is the basis for componentization of the cause effect chain. By tying the vehicle architecture to the cross-layer integration model, we are able to map the reasoning done during verification to vehicle behavior

    parMERASA Multi-Core Execution of Parallelised Hard Real-Time Applications Supporting Analysability

    Get PDF
    International audienceEngineers who design hard real-time embedded systems express a need for several times the performance available today while keeping safety as major criterion. A breakthrough in performance is expected by parallelizing hard real-time applications and running them on an embedded multi-core processor, which enables combining the requirements for high-performance with timing-predictable execution. parMERASA will provide a timing analyzable system of parallel hard real-time applications running on a scalable multicore processor. parMERASA goes one step beyond mixed criticality demands: It targets future complex control algorithms by parallelizing hard real-time programs to run on predictable multi-/many-core processors. We aim to achieve a breakthrough in techniques for parallelization of industrial hard real-time programs, provide hard real-time support in system software, WCET analysis and verification tools for multi-cores, and techniques for predictable multi-core designs with up to 64 cores
    • …
    corecore