5,371 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Static anti-windup compensator design for locally Lipschitz systems under input and output delays

    Get PDF
    This paper proposes a static anti-windup compensator (AWC) design methodology for the locally Lipschitz nonlinear systems, containing time-varying interval delays in input and output of the system in the presence of actuator saturation. Static AWC design is proposed for the systems by considering a delay-range-dependent methodology to consider less conservative delay bounds. The approach has been developed by utilizing an improved Lyapunov-Krasovskii functional, locally Lipschitz nonlinearity property, delay-interval, delay derivative upper bound, local sector condition, L2 gain reduction from exogenous input to exogenous output, improved Wirtinger inequality, additive time-varying delays, and convex optimization algorithms to obtain convex conditions for AWC gain calculations. In contrast to the existing results, the present work considers both input and output delays for the AWC design (along with their combined additive effect) and deals with a more generic locally Lipschitz class of nonlinear systems. The effectiveness of the proposed methodology is demonstrated via simulations for a nonlinear DC servo motor system, possessing multiple time-delays, dynamic nonlinearity and actuator constraints

    Robust Multi-Objective Control of Power System Stabilizer Using Mixed H2/H∞ and µ Analysis

    Get PDF
    In order to study the dynamic stability of the system, having a precise dynamic model including the energy generation units such as generators, excitation system and turbine is necessary. The aim of this paper is to design a power stabilizer for Mashhad power plant and assess its effects on the electromechanical fluctuations. Due to lack of certainty in the system, designing an optimized robust controller is crucial. In this paper, the establishment of balance between the nominal and robust performance is done by the weight functions. In the frequencies where the uncertainty is high, in order to achieve to the robust performance of the controller, μ analysis is more profound, otherwise, in order to achieve to nominal performance, robust stability, noise reduction and decrease of controlling signal, the impact of the controller H2/H∞ is more profound. The results of the simulation studies represent the advantages and effectiveness of the suggested method

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency

    Intelligent STATCOM Voltage Regulation using Fuzzy Logic Control

    Get PDF
    Reactive power compensation is a very important and challenging task in electrical power systems today. Future trends foreseen in power systems such as high interconnectivity and the integration of renewable energy resources produce even more issues related to power system control and stability. Flexible AC transmission systems are vastly used in power systems in order to mitigate several performance aspects found in typical power systems. One shunt connected device in particular, STATCOM, is very powerful and commonly used in voltage regulation at the power transmission level. STATCOM uses voltage sourced converters to inject or absorb reactive power from the power grid as commanded to stabilize the transmission line voltage at the point of connection. The control of STATCOM has relied historically on using traditional PI controllers, however, since the dynamic response of STATCOM highly affects its ability to perform its task, improving the capabilities of STATCOM using more advanced control approaches has become vital for both manufacturers and power systems operators. Fuzzy logic control, as one area of artificial intelligence techniques, has been emerging in recent years as a complement to the conventional methods in various areas of power systems control. The most significant advantage of fuzzy controller as an intelligent controller is that it doesn’t require mathematical modelling. It is robust and nonlinear in its nature, and expert’s knowledge can be utilized in generating control rules. The main contribution is to use fuzzy logic control theory to design a pure fuzzy logic control and another fuzzy adaptive PI control strategies for STATCOM that are superior in performance to traditional PI control approach. This will increase STATCOM’s ability to seamlessly perform their task in voltage regulation. This work investigates the performance of classical PI controlled STATCOM then compares it with fuzzy logic based STATCOM and fuzzy adaptive PI controlled STATCOM. Simulations done using MATLAB on a three generator test system show that adaptive fuzzy PI control technique is faster in responding to voltage variations and better in tracking the reactive current reference. Results also show that a direct control using fuzzy logic provides even faster voltage regulation and acts almost as a perfect tracker for reference reactive current

    Design and Development of Intelligent Navigation Control Systems for Autonomous Robots that Uses Neural Networks and Fuzzy Logic Techniques and Fpga For Its Implementation

    Get PDF
    This research compares the behavior of three robot navigation controllers namely: PID, Artificial Neural Networks (ANN), and Fuzzy Logic (FL), that are used to control the same autonomous mobile robot platform navigating a real unknown indoor environment that contains simple geometric-shaped static objects to reach a goal in an unspecified location. In particular, the study presents and compares the design, simulation, hardware implementation, and testing of these controllers. The first controller is a traditional linear PID controller, and the other two are intelligent non-linear controllers, one using Artificial Neural Networks and the other using Fuzzy Logic Techniques. Each controller is simulated first in MATLAB® using the Simulink Toolbox. Later the controllers are implemented using Quartus ll® software and finally the hardware design of each controller is implemented and downloaded to a Field-Programmable Gate Array (FPGA) card which is mounted onto the mobile robot platform. The response of each controller was tested in the same physical testing environment using a maze that the robot should navigate avoiding obstacles and reaching the desired goal. To evaluate the controllers\u27 behavior each trial run is graded with a standardized rubric based on the controllers\u27 ability to react to situations presented within the trial run. The results of both the MATLAB® simulation and FPGA implementation show the two intelligent controllers, ANN and FL, outperformed the PID controller. The ANN controller was marginally superior to the FL controller in overall navigation and intelligence
    corecore