344 research outputs found

    Flexible-Link Robot Control Using a Linear Parameter Varying Systems Methodology

    Get PDF
    This paper addresses the issues of the Linear Parameter Varying (LPV) modelling and control of flexible-link robot manipulators. The LPV formalism allows the synthesis of nonlinear control laws and the assessment of their closed-loop stability and performances in a simple and effective manner, based on the use of Linear Matrix Inequalities (LMI). Following the quasi-LPV modelling approach, an LPV model of a flexible manipulator is obtained, starting from the nonlinear dynamic model stemming from Euler-Lagrange equations. Based on this LPV model, which has a rational dependence in terms of the varying parameters, two different methods for the synthesis of LPV controllers are explored. They guarantee the asymptotic stability and some level of closed-loop ℒ 2 -gain performance on a bounded parametric set. The first method exploits a descriptor representation that simplifies the rational dependence of the LPV model, whereas the second one manages the troublesome rational dependence by using dilated LMI conditions and taking the particular structure of the model into account. The resulting controllers involve the measured state variables only, namely the joint positions and velocities. Simulation results are presented that illustrate the validity of the proposed control methodology. Comparisons with an inversion-based nonlinear control method are performed in the presence of velocity measurement noise, model uncertainties and high-frequency inputs

    Affine LPV Modeling: An H-infinity Based Approach

    Get PDF

    Direct Learning for Parameter-Varying Feedforward Control: A Neural-Network Approach

    Full text link
    The performance of a feedforward controller is primarily determined by the extent to which it can capture the relevant dynamics of a system. The aim of this paper is to develop an input-output linear parameter-varying (LPV) feedforward parameterization and a corresponding data-driven estimation method in which the dependency of the coefficients on the scheduling signal are learned by a neural network. The use of a neural network enables the parameterization to compensate a wide class of constant relative degree LPV systems. Efficient optimization of the neural-network-based controller is achieved through a Levenberg-Marquardt approach with analytic gradients and a pseudolinear approach generalizing Sanathanan-Koerner to the LPV case. The performance of the developed feedforward learning method is validated in a simulation study of an LPV system showing excellent performance.Comment: Final author version, accepted for publication at 62nd IEEE Conference on Decision and Control, Singapore, 202

    Identifying Position-Dependent Mechanical Systems: A Modal Approach Applied to a Flexible Wafer Stage

    Get PDF
    Increasingly stringent performance requirements for motion control necessitate the use of increasingly detailed models of the system behavior. Motion systems inherently move, therefore, spatio-temporal models of the flexible dynamics are essential. In this paper, a two-step approach for the identification of the spatio-temporal behavior of mechanical systems is developed and applied to a lightweight prototype industrial wafer stage. The proposed approach exploits a modal modeling framework and combines recently developed powerful linear time invariant (LTI) identification tools with a spline-based mode-shape interpolation approach to estimate the spatial system behavior. The experimental results for the wafer stage application confirm the suitability of the proposed approach for the identification of complex position-dependent mechanical systems, and its potential for motion control performance improvements

    Robust Adaptive Control of Linear Parameter-Varying Systems with Unmatched Uncertainties

    Full text link
    This paper presents a robust adaptive control solution for linear parameter-varying (LPV) systems with unknown input gain and unmatched nonlinear (state- and time-dependent) uncertainties based on the L1\mathcal{L}_1 adaptive control architecture and peak-to-peak gain (PPG) analysis/minimization from robust control. Specifically, we introduce new tools for stability and performance analysis leveraging the PPG bound of an LPV system that is computable using linear matrix inequality (LMI) techniques. A piecewise-constant estimation law is introduced to estimate the lumped uncertainty with quantifiable error bounds, which can be systematically improved by reducing the estimation sampling time. We also present a new approach to attenuate the unmatched uncertainty based on the PPG minimization that is applicable to a broad class of systems with linear nominal dynamics. In addition, we derive transient and steady-state performance bounds in terms of the input and output signals of the actual closed-loop system as compared to the same signals of a virtual reference system that represents the possibly best achievable performance. Under mild assumptions, we prove that the transient performance bounds can be uniformly reduced by decreasing the estimation sampling time, which is subject only to hardware limitations. The theoretical development is validated by extensive simulations on the short-period dynamics of an F-16 aircraft

    Direct and Steering Tilt Robust Control of Narrow Vehicles

    Get PDF
    International audienceNarrow Tilting Vehicles (NTVs) are the convergence of a car and a motorcycle. They are expected to be the new generation of city cars considering their practical dimensions and lower energy consumption. However, due to their height to breadth ratio, in order to maintain lateral stability, NTVs should tilt when cornering. Unlike the motorcycle, where the driver tilts the vehicle himself, the tilting of an NTV should be automatic. Two tilting systems are available; Direct and Steering Tilt Control, the combined action of these two systems being certainly the key to improve considerably NTV dynamic performances. In this paper, multivariable control tools (H2 methodology) are used to design, in a systematic way, lateral assistance controllers driving DTC, STC or both DTC/STC systems. A three degrees of freedom model of the vehicle is used, as well as a model of the steering signal, leading to a two degrees of freedom low order controller with an efficient feedforward anticipative part. Taking advantage of all the available measurements on NTVs, the lateral acceleration is directly regulated. Finally, a gain-scheduling solution is provided to make the DTC, STC, and DTC/STC controllers robust to longitudinal speed variations

    LPV techniques for the control of an airborne micro-launcher

    Get PDF
    This paper addresses the robust control of a micro-launcher. The general framework of this work is a R&D project of the French space agency (CNES) focused on new launchers. The objective was to evaluate the potentialities of Linear Parameter Varying (LPV) techniques for the specific problem of launchers control. As a realistic test case, the microlauncher preliminary research program, supported by the CNES Launcher Directorate, has been considered. First a Linear Fractional Transformation (LFT) based model of the launcher has been established and validated. Then two strategies have been chosen to design a robust controller of the angle of attack: a complete LPV controller has first been developed; then a controller based on an LFT representation of a classical lead phase controller has been considered. Realistic simulations have been conducted to compare both strategies with a more traditional interpolated lead phase controller. Finally, the simulation results exhibit very promising results, allowing a total respect of the performance specifications

    Linear Parameter-Varying Control of Full-Vehicle Vertical Dynamics using Semi-Active Dampers

    Get PDF
    Semi-aktive Fahrwerke bergen im Vergleich zu passiven großes Potential zur Verbesserung wesentlicher Fahrzeugeigenschaften, wie Fahrkomfort, Straßenhaftung und Fahrverhalten. Die Ausnutzung dieses Potentials verlangt nach geeigneten Regelungsalgorithmen,welche das nichtlineare Eingangssignal-zu-Dämpferkraft Verhalten und die Passivitätsbeschränkung semi-aktiver Dämpfer berücksichtigen. Im Besonderen die Passivitätsbeschränkung impliziert enge, zustandsabhängige Aktuatorkraftbegrenzungen und sollte daher im Regelungsentwurf direkt berücksichtigt werden. Der Entwurf performanter semi-aktiver Fahrwerkregelungen stellt eine große Herausforderung dar, da Störungen aufgrund von Straßenunebenheiten und Lastwechseln unterschiedliche Anforderungen an die Regelung stellen, und zusätzlich in einer Gesamtfahrzeuganwendung auch ein Regelungsentwurf basierend auf einem Gesamtfahrzeugmodell benötigt wird. Im Gegensatz zu konventionellen viertelfahrzeug-basierten Fahrwerkregelungsansätzen, welche häufig in der Literatur zu finden sind, zielt der Gesamtfahrzeugregelungsansatz dieser Dissertation auf die explizite Berücksichtigung der Hub-, Wank und Nickbewegung des Aufbaus. Darüber hinaus ermöglicht der Gesamtfahrzeugansatz die Entwicklung von fehlertoleranten Reglern, welche die schwache Aktuatorredundanz der vier Dämpfer nutzen. Die vorliegende Dissertation befasst sich mit linear parameter-variablen (LPV) Regelungsmethoden zur Lösung des oben beschriebenen komplexen Regelungsproblems. Die Kraftbegrenzungen der semi-aktiven Dämpfer werden mittels Sättigungsindikatoren modelliert und diese dann als variable Parameter in den LPV Regelungsentwurf integriert. Zusätzlich wird der LPV Regler um eine Dämpferkraftrekonfiguration erweitert, so dass der Regler den Dämpferkraftverlust im Falle einer Dämpferfehlfunktion mit den verbleibenden gesunden Dämpfern kompensiert. Der Regelungsentwurf begegnet den unterschiedlichen Anforderungen von Straßen- und Lastwechselstörungen durch eine Zweifreiheitsgradregelung bestehend aus einem LPV Regler und einer LPV Vorsteuerung.Dabei fokussiert sich der LPV Regler auf die Verminderung des Effekts der Straßenunebenheiten und die LPV Vorsteuerung verringert den Effekt der Lastwechselstörungen. Auf diese Weise zeigt die Zweifreiheitsgradregelung das gewünschte Verhalten trotz dieser beiden konträren Störungen. Die Wirksamkeit der vorgeschlagenen Zweifreiheitsgradregelung wird durch Experimente auf einem Stempelprüfstand und durch Straßenversuche validiert. Die Ergebnisse zeigen eine Verbesserung des klassischen Zielkonflikts der Fahrwerksregelung zwischen Fahrkomfort und Straßenhaftung durch die LPV Gesamtfahrzeugregelung. Insbesondere erzielt die LPV Gesamtfahrzeugregelung eine 10 % ige Verbesserung von Fahrkomfort und Straßenhaftung im Vergleich zu einer Skyhook-Groundhook Gesamtfahrzeugregelung. Des Weiteren verdeutlicht ein Experiment mit einem simulierten Dämpferfehler die Vorteile der fehlertoleranten LPV Regelung. Abschließend wird anhand von Spurwechselversuchen die Wirksamkeit der LPV Vorsteuerung zur Verbesserung von Fahrkomfort, Straßenhaftung und Fahrverhalten bei dynamischen Lenkwinkeleingaben des Fahrers demonstriert
    corecore