1,534 research outputs found

    How to stop time stopping

    Get PDF
    Zeno-timelocks constitute a challenge for the formal verification of timed automata: they are difficult to detect, and the verification of most properties (e.g., safety) is only correct for timelock-free models. Some time ago, Tripakis proposed a syntactic check on the structure of timed automata: If a certain condition (called strong non-zenoness) is met by all the loops in a given automaton, then zeno-timelocks are guaranteed not to occur. Checking for strong non-zenoness is efficient, and compositional (if all components in a network of automata are strongly non-zeno, then the network is free from zeno-timelocks). Strong non-zenoness, however, is sufficient-only: There exist non-zeno specifications which are not strongly non-zeno. A TCTL formula is known that represents a sufficient-and-necessary condition for non-zenoness; unfortunately, this formula requires a demanding model-checking algorithm, and not all model-checkers are able to express it. In addition, this algorithm provides only limited diagnostic information. Here we propose a number of alternative solutions. First, we show that the compositional application of strong non-zenoness can be weakened: Some networks can be guaranteed to be free from Zeno-timelocks, even if not every component is strongly non-zeno. Secondly, we present new syntactic, sufficient-only conditions that complement strong non-zenoness. Finally, we describe a sufficient-and-necessary condition that only requires a simple form of reachability analysis. Furthermore, our conditions identify the cause of zeno-timelocks directly on the model, in the form of unsafe loops. We also comment on a tool that we have developed, which implements the syntactic checks on Uppaal models. The tool is also able to derive, from those unsafe loops in a given automaton (in general, an Uppaal model representing a product automaton of a given network), the reachability formulas that characterise the occurrence of zeno-timelocks. A modified version of the CSMA/CD protocol is used as a case-study

    Modelling Clock Synchronization in the Chess gMAC WSN Protocol

    Get PDF
    We present a detailled timed automata model of the clock synchronization algorithm that is currently being used in a wireless sensor network (WSN) that has been developed by the Dutch company Chess. Using the Uppaal model checker, we establish that in certain cases a static, fully synchronized network may eventually become unsynchronized if the current algorithm is used, even in a setting with infinitesimal clock drifts

    Timed Automata Semantics for Analyzing Creol

    Full text link
    We give a real-time semantics for the concurrent, object-oriented modeling language Creol, by mapping Creol processes to a network of timed automata. We can use our semantics to verify real time properties of Creol objects, in particular to see whether processes can be scheduled correctly and meet their end-to-end deadlines. Real-time Creol can be useful for analyzing, for instance, abstract models of multi-core embedded systems. We show how analysis can be done in Uppaal.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    A Model-Derivation Framework for Software Analysis

    Full text link
    Model-based verification allows to express behavioral correctness conditions like the validity of execution states, boundaries of variables or timing at a high level of abstraction and affirm that they are satisfied by a software system. However, this requires expressive models which are difficult and cumbersome to create and maintain by hand. This paper presents a framework that automatically derives behavioral models from real-sized Java programs. Our framework builds on the EMF/ECore technology and provides a tool that creates an initial model from Java bytecode, as well as a series of transformations that simplify the model and eventually output a timed-automata model that can be processed by a model checker such as UPPAAL. The framework has the following properties: (1) consistency of models with software, (2) extensibility of the model derivation process, (3) scalability and (4) expressiveness of models. We report several case studies to validate how our framework satisfies these properties.Comment: In Proceedings MARS 2017, arXiv:1703.0581

    A Model-Derivation Framework for Software Analysis

    Get PDF
    Model-based verification allows to express behavioral correctness conditions like the validity of execution states, boundaries of variables or timing at a high level of abstraction and affirm that they are satisfied by a software system. However, this requires expressive models which are difficult and cumbersome to create and maintain by hand. This paper presents a framework that automatically derives behavioral models from real-sized Java programs. Our framework builds on the EMF/ECore technology and provides a tool that creates an initial model from Java bytecode, as well as a series of transformations that simplify the model and eventually output a timed-automata model that can be processed by a model checker such as UPPAAL. The framework has the following properties: (1) consistency of models with software, (2) extensibility of the model derivation process, (3) scalability and (4) expressiveness of models. We report several case studies to validate how our framework satisfies these properties.Comment: In Proceedings MARS 2017, arXiv:1703.0581

    Algorithmic Verification of Continuous and Hybrid Systems

    Get PDF
    We provide a tutorial introduction to reachability computation, a class of computational techniques that exports verification technology toward continuous and hybrid systems. For open under-determined systems, this technique can sometimes replace an infinite number of simulations.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    Verifying collision avoidance behaviours for unmanned surface vehicles using probabilistic model checking

    Get PDF
    Collision avoidance is an essential safety requirement for unmanned surface vehicles (USVs). Normally, its practical verification is non-trivial, due to the stochastic behaviours of both the USVs and the intruders. This paper presents the probabilistic timed automata (PTAs) based formalism for three collision avoidance behaviours of USVs in uncertain dynamic environments, which are associated with the crossing situation in COLREGs. Steering right, acceleration, and deceleration are considered potential evasive manoeuvres. The state-of-the-art prism model checker is applied to analyse the underlying models. This work provides a framework and practical application of the probabilistic model checking for decision making in collision avoidance for USVs

    Formal Modeling of Connectionism using Concurrency Theory, an Approach Based on Automata and Model Checking

    Get PDF
    This paper illustrates a framework for applying formal methods techniques, which are symbolic in nature, to specifying and verifying neural networks, which are sub-symbolic in nature. The paper describes a communicating automata [Bowman & Gomez, 2006] model of neural networks. We also implement the model using timed automata [Alur & Dill, 1994] and then undertake a verification of these models using the model checker Uppaal [Pettersson, 2000] in order to evaluate the performance of learning algorithms. This paper also presents discussion of a number of broad issues concerning cognitive neuroscience and the debate as to whether symbolic processing or connectionism is a suitable representation of cognitive systems. Additionally, the issue of integrating symbolic techniques, such as formal methods, with complex neural networks is discussed. We then argue that symbolic verifications may give theoretically well-founded ways to evaluate and justify neural learning systems in the field of both theoretical research and real world applications
    • ā€¦
    corecore