5,382 research outputs found

    Magic Sets for Disjunctive Datalog Programs

    Get PDF
    In this paper, a new technique for the optimization of (partially) bound queries over disjunctive Datalog programs with stratified negation is presented. The technique exploits the propagation of query bindings and extends the Magic Set (MS) optimization technique. An important feature of disjunctive Datalog is nonmonotonicity, which calls for nondeterministic implementations, such as backtracking search. A distinguishing characteristic of the new method is that the optimization can be exploited also during the nondeterministic phase. In particular, after some assumptions have been made during the computation, parts of the program may become irrelevant to a query under these assumptions. This allows for dynamic pruning of the search space. In contrast, the effect of the previously defined MS methods for disjunctive Datalog is limited to the deterministic portion of the process. In this way, the potential performance gain by using the proposed method can be exponential, as could be observed empirically. The correctness of MS is established thanks to a strong relationship between MS and unfounded sets that has not been studied in the literature before. This knowledge allows for extending the method also to programs with stratified negation in a natural way. The proposed method has been implemented in DLV and various experiments have been conducted. Experimental results on synthetic data confirm the utility of MS for disjunctive Datalog, and they highlight the computational gain that may be obtained by the new method w.r.t. the previously proposed MS methods for disjunctive Datalog programs. Further experiments on real-world data show the benefits of MS within an application scenario that has received considerable attention in recent years, the problem of answering user queries over possibly inconsistent databases originating from integration of autonomous sources of information.Comment: 67 pages, 19 figures, preprint submitted to Artificial Intelligenc

    A statistical approach to the inverse problem in magnetoencephalography

    Full text link
    Magnetoencephalography (MEG) is an imaging technique used to measure the magnetic field outside the human head produced by the electrical activity inside the brain. The MEG inverse problem, identifying the location of the electrical sources from the magnetic signal measurements, is ill-posed, that is, there are an infinite number of mathematically correct solutions. Common source localization methods assume the source does not vary with time and do not provide estimates of the variability of the fitted model. Here, we reformulate the MEG inverse problem by considering time-varying locations for the sources and their electrical moments and we model their time evolution using a state space model. Based on our predictive model, we investigate the inverse problem by finding the posterior source distribution given the multiple channels of observations at each time rather than fitting fixed source parameters. Our new model is more realistic than common models and allows us to estimate the variation of the strength, orientation and position. We propose two new Monte Carlo methods based on sequential importance sampling. Unlike the usual MCMC sampling scheme, our new methods work in this situation without needing to tune a high-dimensional transition kernel which has a very high cost. The dimensionality of the unknown parameters is extremely large and the size of the data is even larger. We use Parallel Virtual Machine (PVM) to speed up the computation.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS716 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Super Logic Programs

    Full text link
    The Autoepistemic Logic of Knowledge and Belief (AELB) is a powerful nonmonotic formalism introduced by Teodor Przymusinski in 1994. In this paper, we specialize it to a class of theories called `super logic programs'. We argue that these programs form a natural generalization of standard logic programs. In particular, they allow disjunctions and default negation of arbibrary positive objective formulas. Our main results are two new and powerful characterizations of the static semant ics of these programs, one syntactic, and one model-theoretic. The syntactic fixed point characterization is much simpler than the fixed point construction of the static semantics for arbitrary AELB theories. The model-theoretic characterization via Kripke models allows one to construct finite representations of the inherently infinite static expansions. Both characterizations can be used as the basis of algorithms for query answering under the static semantics. We describe a query-answering interpreter for super programs which we developed based on the model-theoretic characterization and which is available on the web.Comment: 47 pages, revised version of the paper submitted 10/200

    Atmospheric artifacts correction for InSAR using empirical model and numerical weather prediction models

    Get PDF
    lnSAR has been proved its unprecedented ability and merits of monitoring ground deformation on large scale with centimeter to millimeter scale accuracy. However, several factors affect the reliability and accuracy of its applications. Among them, atmospheric artifacts due to spatial and temporal variations of atmosphere state often pose noise to interferograms. Therefore, atmospheric artifacts m itigalion remains one of the biggest challenges to be addressed in the In SAR community. State-of-the-art research works have revealed atmospheric artifacts can be partially compensated with empirical models, temporal-spatial filtering approach in lnSAR time series, pointwise GPS zenith path delay and numerical weather prediction models. In this thesis, firstly, we further develop a covariance weighted linear empirical model correction method. Secondly, a realistic LOS direction integration approach based on global reanalysis data is employed and comprehensively compared with the conventional method that integrates along zenith direction. Finally, the realistic integration method is applied to local WRF numerical forecast model data. l'vbreover, detailed comparisons between different global reanalysis data and local WRF model are assessed. In terms of empirical models correcting methods, many publications have studied correcting stratified tropospheric phase delay by assuming a linear model between them and topography. However, most of these studies ha\19 not considered the effect of turbulent atmospheric artefacts when adjusting the linear model to data. In this thesis, an improved technique that minimizes the influence of turbulent atmosphere in the model adjustment has been presented. In the proposed algorithm, the model is adjusted to the phase differences of pixels instead of using the unwrapped phase of each pixel. In addition, the different phase differences are weighted as a function of its APS covariance estimated from an empirical variogram to reduce in the model adjustment the impact of pixel pairs with significant turbulent atmosphere. The performance of the proposed method has been validated with both simulated and real Sentinel-1 SAR data in Tenerife island, Spain. Considering methods using meteorological observations to mitigate APS, an accurate realistic com puling strategy utilizing global atmospheric reanalysis data has been implemented. With the approach, the realistic LOS path along satellite and the monitored points is considered, rather than converting from zenith path delay. Com pared with zenith delay based method, the biggest advantage is that it can avoid errors caused by anisotropic atmospheric behaviour. The accurate integration method is validated with Sentinel-1 data in three test sites: Tenerife island, Spain, Almeria, Spain and Crete island, Greece. Compared to conventional zenith method, the realistic integration method shows great improvement. A variety of global reanalysis data are available from different weather forecasting organizations, such as ERA-Interim, ERAS, MERRA2. In this study, the realistic integration mitigation method is assessed on these different reanalysis data. The results show that these data are feasible to mitigate APS to some extent in most cases. The assessment also demonstrates that the ERAS performs the best statistically, compared to other global reanalysis data. l'vbreover, as local numerical weather forecast models have the ability to predict high spatial resolution atmospheric parameters, by using which, it has the potential to achieve APS mitigation. In this thesis, the realistic integration method is also employed on the local WRF model data in Tenerife and Almeria test s ites. However, it turns out that the WRF model performs worse than the original global reanalysis data.Las técnicas lnSAR han demostrado su capacidad sin precedentes y méritos para el monitoreo de la deformaci6n del suelo a gran escala con una precisión centimétrica o incluso milimétrica. Sin embargo, varios factores afectan la fiabilidad y precisión de sus aplicaciones. Entre ellos, los artefactos atmosféricos debidos a variaciones espaciales y temporales del estado de la atm6sfera a menudo añaden ruido a los interferogramas. Por lo tanto, la mitigación de los artefactos atmosféricos sigue siendo uno de los mayores desafíos a abordar en la comunidad lnSAR. Los trabajos de investigaci6n de vanguardia han revelado que los artefactos atmosféricos se pueden compensar parcialmente con modelos empíricos, enfoque de filtrado temporal-espacial en series temporales lnSAR, retardo puntual del camino cenital con GPS y modelos numéricos de predicción meteorológica. En esta tesis, en primer lugar, desarrollamos un método de corrección de modelo empírico lineal ponderado por covarianza. En segundo lugar, se emplea un enfoque realista de integracion de dirección LOS basado en datos de reanálisis global y se compara exhaustivamente con el método convencional que se integra a lo largo de la dirección cenital. Finalmente, el método de integraci6n realista se aplica a los datos del modelo de pronóstico numérico WRF local. Ademas, se evalúan las comparaciones detalladas entre diferentes datos de reanálisis global y el modelo WRF local. En términos de métodos de corrección con modelos empíricos, muchas publicaciones han estudiado la corrección del retraso estratificado de la fase troposférica asumiendo un modelo lineal entre ellos y la topografía. Sin embargo, la mayoría de estos estudios no han considerado el efecto de los artefactos atmosféricos turbulentos al ajustar el modelo lineal a los datos. En esta tesis, se ha presentado una técnica mejorada que minimiza la influencia de la atm6sfera turbulenta en el ajuste del modelo. En el algoritmo propuesto, el modelo se ajusta a las diferencias de fase de los pixeles en lugar de utilizar la fase sin desenrollar de cada pixel. Además, las diferentes diferencias de fase se ponderan en función de su covarianza APS estimada a partir de un variograma empírico para reducir en el ajuste del modelo el impacto de los pares de pixeles con una atm6sfera turbulenta significativa. El rendimiento del método propuesto ha sido validado con datos SAR Sentinel-1 simulados y reales en la isla de Tenerife, España. Teniendo en cuenta los métodos que utilizan observaciones meteorológicas para mitigar APS, se ha implementado una estrategia de computación realista y precisa que utiliza datos de reanálisis atmosférico global. Con el enfoque, se considera el camino realista de LOS a lo largo del satélite y los puntos monitoreados, en lugar de convertirlos desde el retardo de la ruta cenital. En comparación con el método basado en la demora cenital, la mayor ventaja es que puede evitar errores causados por el comportamiento atmosférico anisotrópico. El método de integración preciso se valida con los datos de Sentinel-1 en tres sitios de prueba: la isla de Tenerife, España, Almería, España y la isla de Creta, Grecia. En comparación con el método cenital convencional, el método de integración realista muestra una gran mejora
    corecore