419 research outputs found

    Argument filterings and usable rules in higher-order rewrite systems

    Get PDF
    The static dependency pair method is a method for proving the termination of higher-order rewrite systems a la Nipkow. It combines the dependency pair method introduced for first-order rewrite systems with the notion of strong computability introduced for typed lambda-calculi. Argument filterings and usable rules are two important methods of the dependency pair framework used by current state-of-the-art first-order automated termination provers. In this paper, we extend the class of higher-order systems on which the static dependency pair method can be applied. Then, we extend argument filterings and usable rules to higher-order rewriting, hence providing the basis for a powerful automated termination prover for higher-order rewrite systems

    Termination of rewrite relations on λ\lambda-terms based on Girard's notion of reducibility

    Get PDF
    In this paper, we show how to extend the notion of reducibility introduced by Girard for proving the termination of β\beta-reduction in the polymorphic λ\lambda-calculus, to prove the termination of various kinds of rewrite relations on λ\lambda-terms, including rewriting modulo some equational theory and rewriting with matching modulo β\betaη\eta, by using the notion of computability closure. This provides a powerful termination criterion for various higher-order rewriting frameworks, including Klop's Combinatory Reductions Systems with simple types and Nipkow's Higher-order Rewrite Systems

    Refinement Types as Higher Order Dependency Pairs

    Get PDF
    Refinement types are a well-studied manner of performing in-depth analysis on functional programs. The dependency pair method is a very powerful method used to prove termination of rewrite systems; however its extension to higher order rewrite systems is still the object of active research. We observe that a variant of refinement types allow us to express a form of higher-order dependency pair criterion that only uses information at the type level, and we prove the correctness of this criterion

    Dynamic Dependency Pairs for Algebraic Functional Systems

    Get PDF
    We extend the higher-order termination method of dynamic dependency pairs to Algebraic Functional Systems (AFSs). In this setting, simply typed lambda-terms with algebraic reduction and separate {\beta}-steps are considered. For left-linear AFSs, the method is shown to be complete. For so-called local AFSs we define a variation of usable rules and an extension of argument filterings. All these techniques have been implemented in the higher-order termination tool WANDA

    Polynomial Interpretations for Higher-Order Rewriting

    Get PDF
    The termination method of weakly monotonic algebras, which has been defined for higher-order rewriting in the HRS formalism, offers a lot of power, but has seen little use in recent years. We adapt and extend this method to the alternative formalism of algebraic functional systems, where the simply-typed lambda-calculus is combined with algebraic reduction. Using this theory, we define higher-order polynomial interpretations, and show how the implementation challenges of this technique can be tackled. A full implementation is provided in the termination tool WANDA

    The computability path ordering

    Get PDF
    This paper aims at carrying out termination proofs for simply typed higher-order calculi automatically by using ordering comparisons. To this end, we introduce the computability path ordering (CPO), a recursive relation on terms obtained by lifting a precedence on function symbols. A first version, core CPO, is essentially obtained from the higher-order recursive path ordering (HORPO) by eliminating type checks from some recursive calls and by incorporating the treatment of bound variables as in the com-putability closure. The well-foundedness proof shows that core CPO captures the essence of computability arguments \'a la Tait and Girard, therefore explaining its name. We further show that no further type check can be eliminated from its recursive calls without loosing well-foundedness, but for one for which we found no counterexample yet. Two extensions of core CPO are then introduced which allow one to consider: the first, higher-order inductive types; the second, a precedence in which some function symbols are smaller than application and abstraction

    Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

    Get PDF
    Dependency pairs are a key concept at the core of modern automated termination provers for first-order term rewriting systems. In this paper, we introduce an extension of this technique for a large class of dependently-typed higher-order rewriting systems. This extends previous results by Wahlstedt on the one hand and the first author on the other hand to strong normalization and non-orthogonal rewriting systems. This new criterion is implemented in the type-checker Dedukti
    • …
    corecore