121 research outputs found

    Deep learning in crowd counting: A survey

    Get PDF
    Counting high-density objects quickly and accurately is a popular area of research. Crowd counting has significant social and economic value and is a major focus in artificial intelligence. Despite many advancements in this field, many of them are not widely known, especially in terms of research data. The authors proposed a three-tier standardised dataset taxonomy (TSDT). The Taxonomy divides datasets into small-scale, large-scale and hyper-scale, according to different application scenarios. This theory can help researchers make more efficient use of datasets and improve the performance of AI algorithms in specific fields. Additionally, the authors proposed a new evaluation index for the clarity of the dataset: average pixel occupied by each object (APO). This new evaluation index is more suitable for evaluating the clarity of the dataset in the object counting task than the image resolution. Moreover, the authors classified the crowd counting methods from a data-driven perspective: multi-scale networks, single-column networks, multi-column networks, multi-task networks, attention networks and weak-supervised networks and introduced the classic crowd counting methods of each class. The authors classified the existing 36 datasets according to the theory of three-tier standardised dataset taxonomy and discussed and evaluated these datasets. The authors evaluated the performance of more than 100 methods in the past five years on different levels of popular datasets. Recently, progress in research on small-scale datasets has slowed down. There are few new datasets and algorithms on small-scale datasets. The studies focused on large or hyper-scale datasets appear to be reaching a saturation point. The combined use of multiple approaches began to be a major research direction. The authors discussed the theoretical and practical challenges of crowd counting from the perspective of data, algorithms and computing resources. The field of crowd counting is moving towards combining multiple methods and requires fresh, targeted datasets. Despite advancements, the field still faces challenges such as handling real-world scenarios and processing large crowds in real-time. Researchers are exploring transfer learning to overcome the limitations of small datasets. The development of effective algorithms for crowd counting remains a challenging and important task in computer vision and AI, with many opportunities for future research.BHF, AA/18/3/34220Hope Foundation for Cancer Research, RM60G0680GCRF, P202PF11;Sino‐UK Industrial Fund, RP202G0289LIAS, P202ED10, P202RE969Data Science Enhancement Fund, P202RE237Sino‐UK Education Fund, OP202006Fight for Sight, 24NN201Royal Society International Exchanges Cost Share Award, RP202G0230MRC, MC_PC_17171BBSRC, RM32G0178B

    Interactive Attention Learning on Detection of Lane and Lane Marking on the Road by Monocular Camera Image

    Get PDF
    Vision-based identification of lane area and lane marking on the road is an indispensable function for intelligent driving vehicles, especially for localization, mapping and planning tasks. However, due to the increasing complexity of traffic scenes, such as occlusion and discontinuity, detecting lanes and lane markings from an image captured by a monocular camera becomes persistently challenging. The lanes and lane markings have a strong position correlation and are constrained by a spatial geometry prior to the driving scene. Most existing studies only explore a single task, i.e., either lane marking or lane detection, and do not consider the inherent connection or exploit the modeling of this kind of relationship between both elements to improve the detection performance of both tasks. In this paper, we establish a novel multi-task encoder–decoder framework for the simultaneous detection of lanes and lane markings. This approach deploys a dual-branch architecture to extract image information from different scales. By revealing the spatial constraints between lanes and lane markings, we propose an interactive attention learning for their feature information, which involves a Deformable Feature Fusion module for feature encoding, a Cross-Context module as information decoder, a Cross-IoU loss and a Focal-style loss weighting for robust training. Without bells and whistles, our method achieves state-of-the-art results on tasks of lane marking detection (with 32.53% on IoU, 81.61% on accuracy) and lane segmentation (with 91.72% on mIoU) of the BDD100K dataset, which showcases an improvement of 6.33% on IoU, 11.11% on accuracy in lane marking detection and 0.22% on mIoU in lane detection compared to the previous methods

    Effective Uni-Modal to Multi-Modal Crowd Estimation based on Deep Neural Networks

    Get PDF
    Crowd estimation is a vital component of crowd analysis. It finds many applications in real-worldscenarios, e.g. huge gatherings management like Hajj, sporting and musical events, or political rallies. Automated crowd counting facilitates better and effective management of such events and consequently prevents any undesired situation. This is a very challenging problem in practice since there exists a significant difference in the crowd number in and across different images, varying image resolution, large perspective, severe occlusions, and dense crowd-like cluttered background regions. Current approaches do not handle huge crowd diversity well and thus perform poorly in cases ranging from extreme low to high crowd-density, thus, yielding huge crowd underestimation or overestimation. Also, manual crowd counting proves to be infeasible due to very slow and inaccurate results. To address these major crowd counting issues and challenges, we investigate two different types of input data: uni-modal (image) and multi-modal (image and audio). In the uni-modal setting, we propose and analyze four novel end-to-end crowd counting networks, ranging from multi-scale fusion-based models to uni-scale one-pass and two-pass multitask networks. The multi-scale networks employ the attention mechanism to enhance the model efficacy. On the other hand, the uni-scale models are well-equipped with novel and simple-yet effective patch re-scaling module (PRM) that functions identical but is more lightweight than multi-scale approaches. Experimental evaluation demonstrates that the proposed networks outperform the state-of-the-art in majority cases on four different benchmark datasets with up to 12.6% improvement for the RMSE evaluation metric. The better cross-dataset performance also validates the better generalization ability of our schemes. For the multi-modal input, effective feature-extraction (FE) and strong information fusion between two modalities remain a big challenge. Thus, the multi-modal novel network design focuses on investigating different features fusion techniques amid improving the FE. Based on the comprehensive experimental evaluation, the proposed multi-modal network increases the performance under all standard evaluation criteria with up to 33.8% improvement in comparison to the state-of-the-art. The application of multi-scale uni-modal attention networks also proves more effective in other deep learning domains, as demonstrated successfully on seven different scene-text recognition task datasets with better performance

    Efficient Semantic Segmentation on Edge Devices

    Full text link
    Semantic segmentation works on the computer vision algorithm for assigning each pixel of an image into a class. The task of semantic segmentation should be performed with both accuracy and efficiency. Most of the existing deep FCNs yield to heavy computations and these networks are very power hungry, unsuitable for real-time applications on portable devices. This project analyzes current semantic segmentation models to explore the feasibility of applying these models for emergency response during catastrophic events. We compare the performance of real-time semantic segmentation models with non-real-time counterparts constrained by aerial images under oppositional settings. Furthermore, we train several models on the Flood-Net dataset, containing UAV images captured after Hurricane Harvey, and benchmark their execution on special classes such as flooded buildings vs. non-flooded buildings or flooded roads vs. non-flooded roads. In this project, we developed a real-time UNet based model and deployed that network on Jetson AGX Xavier module

    Video foreground segmentation with deep learning

    Get PDF
    This thesis tackles the problem of foreground segmentation in videos, even under extremely challenging conditions. This task comes with a plethora of hurdles, as the model needs to distinguish the difference between moving objects and irrelevant background motion which can be caused by the weather, illumination, camera movement etc. As foreground segmentation is often the first step of various highly important applications (video surveillance for security, patient/infant monitoring etc.), it is crucial to develop a model capable of producing excellent results in all kinds of conditions. In order to tackle this problem, we follow the recent trend in other computer vision areas and harness the power of deep learning. We design architectures of convolutional neural networks specifically targeted to counter the aforementioned challenges. We first propose a 3D CNN that models the spatial and temporal information of the scene simultaneously. The network is deep enough to successfully cover more than 50 different scenes of various conditions with no need for any fine-tuning. These conditions include illumination (day or night), weather (sunny, rainy or snowing), background movements (trees moving from the wind, fountains etc) and others. Next, we propose a data augmentation method specifically targeted to illumination changes. We show that artificially augmenting the data set with this method significantly improves the segmentation results, even when tested under sudden illumination changes. We also present a post-processing method that exploits the temporal information of the input video. Finally, we propose a complex deep learning model which learns the illumination of the scene and performs foreground segmentation simultaneously
    corecore