96 research outputs found

    Static Application-Level Race Detection in STM Haskell using Contracts

    Get PDF
    Writing concurrent programs is a hard task, even when using high-level synchronization primitives such as transactional memories together with a functional language with well-controlled side-effects such as Haskell, because the interferences generated by the processes to each other can occur at different levels and in a very subtle way. The problem occurs when a thread leaves or exposes the shared data in an inconsistent state with respect to the application logic or the real meaning of the data. In this paper, we propose to associate contracts to transactions and we define a program transformation that makes it possible to extend static contract checking in the context of STM Haskell. As a result, we are able to check statically that each transaction of a STM Haskell program handles the shared data in a such way that a given consistency property, expressed in the form of a user-defined boolean function, is preserved. This ensures that bad interference will not occur during the execution of the concurrent program.Comment: In Proceedings PLACES 2013, arXiv:1312.2218. [email protected]; [email protected]

    How functional programming mattered

    Get PDF
    In 1989 when functional programming was still considered a niche topic, Hughes wrote a visionary paper arguing convincingly ‘why functional programming matters’. More than two decades have passed. Has functional programming really mattered? Our answer is a resounding ‘Yes!’. Functional programming is now at the forefront of a new generation of programming technologies, and enjoying increasing popularity and influence. In this paper, we review the impact of functional programming, focusing on how it has changed the way we may construct programs, the way we may verify programs, and fundamentally the way we may think about programs

    Validity contracts for software transactions

    Full text link
    Software Transactional Memory is a promising approach to concurrent programming, freeing programmers from error-prone concurrency control decisions that are complicated and not composable. But few such systems address consistencies of transactional objects. In this thesis, I propose a contract-based transactional programming model toward more secure transactional softwares. In this general model, a validity contract specifies both requirements and effects for transactions. Validity contracts bring numerous benefits including reasoning about and verifying transactional programs, detecting and resolving transactional conflicts, automating object revalidation and easing program debugging. I introduce an ownership-based framework, namely AVID, derived from the general model, using object ownership as a mechanism for specifying and reasoning validity contracts. I have specified a formal type system and implemented a prototype type checker to support static checking. I also have built a transactional library framework AVID, based on existing Java DSTM2 framework, for expressing transactions and validity contracts. Experimental results on a multi-core system show that contracts add little overheads to the original STM. I find that contract-aware contention management yields significant speedups in some cases. The results have suggested compiler directed optimisation for tunning contract-based transactional programs. My further work will investigate the applications of transaction contracts on various aspects of TM research such as hardware support and open-nesting

    17th SC@RUG 2020 proceedings 2019-2020

    Get PDF

    Transactions with isolation and cooperation

    Full text link

    Principles of Security and Trust: 7th International Conference, POST 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings

    Get PDF
    authentication; computer science; computer software selection and evaluation; cryptography; data privacy; formal logic; formal methods; formal specification; internet; privacy; program compilers; programming languages; security analysis; security systems; semantics; separation logic; software engineering; specifications; verification; world wide we
    • …
    corecore