3,050 research outputs found

    CaSPiS: A Calculus of Sessions, Pipelines and Services

    Get PDF
    Service-oriented computing is calling for novel computational models and languages with well disciplined primitives for client-server interaction, structured orchestration and unexpected events handling. We present CaSPiS, a process calculus where the conceptual abstractions of sessioning and pipelining play a central role for modelling service-oriented systems. CaSPiS sessions are two-sided, uniquely named and can be nested. CaSPiS pipelines permit orchestrating the flow of data produced by different sessions. The calculus is also equipped with operators for handling (unexpected) termination of the partner’s side of a session. Several examples are presented to provide evidence of the flexibility of the chosen set of primitives. One key contribution is a fully abstract encoding of Misra et al.’s orchestration language Orc. Another main result shows that in CaSPiS it is possible to program a “graceful termination” of nested sessions, which guarantees that no session is forced to hang forever after the loss of its partner

    Process Calculi Abstractions for Biology

    Get PDF
    Several approaches have been proposed to model biological systems by means of the formal techniques and tools available in computer science. To mention just a few of them, some representations are inspired by Petri Nets theory, and some other by stochastic processes. A most recent approach consists in interpreting the living entities as terms of process calculi where the behavior of the represented systems can be inferred by applying syntax-driven rules. A comprehensive picture of the state of the art of the process calculi approach to biological modeling is still missing. This paper goes in the direction of providing such a picture by presenting a comparative survey of the process calculi that have been used and proposed to describe the behavior of living entities. This is the preliminary version of a paper that was published in Algorithmic Bioprocesses. The original publication is available at http://www.springer.com/computer/foundations/book/978-3-540-88868-

    Name-passing calculi and crypto-primitives: A survey

    No full text
    The paper surveys the literature on high-level name-passing process calculi, and their extensions with cryptographic primitives. The survey is by no means exhaustive, for essentially two reasons. First, in trying to provide a coherent presentation of different ideas and techniques, one inevitably ends up leaving out the approaches that do not fit the intended roadmap. Secondly, the literature on the subject has been growing at very high rate over the years. As a consequence, we decided to concentrate on few papers that introduce the main ideas, in the hope that discussing them in some detail will provide sufficient insight for further reading

    Reconciling positional and nominal binding

    Full text link
    We define an extension of the simply-typed lambda calculus where two different binding mechanisms, by position and by name, nicely coexist. In the former, as in standard lambda calculus, the matching between parameter and argument is done on a positional basis, hence alpha-equivalence holds, whereas in the latter it is done on a nominal basis. The two mechanisms also respectively correspond to static binding, where the existence and type compatibility of the argument are checked at compile-time, and dynamic binding, where they are checked at run-time.Comment: In Proceedings ITRS 2012, arXiv:1307.784

    A Fully Abstract Symbolic Semantics for Psi-Calculi

    Full text link
    We present a symbolic transition system and bisimulation equivalence for psi-calculi, and show that it is fully abstract with respect to bisimulation congruence in the non-symbolic semantics. A psi-calculus is an extension of the pi-calculus with nominal data types for data structures and for logical assertions representing facts about data. These can be transmitted between processes and their names can be statically scoped using the standard pi-calculus mechanism to allow for scope migrations. Psi-calculi can be more general than other proposed extensions of the pi-calculus such as the applied pi-calculus, the spi-calculus, the fusion calculus, or the concurrent constraint pi-calculus. Symbolic semantics are necessary for an efficient implementation of the calculus in automated tools exploring state spaces, and the full abstraction property means the semantics of a process does not change from the original

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: ‱ The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. ‱ The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. ‱ The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. ‱ The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    A symbolic semantics for a clculus for service-oriented computing

    Get PDF
    We introduce a symbolic characterisation of the operational semantics of COWS, a formal language for specifying and combining service-oriented applications, while modelling their dynamic behaviour. This alternative semantics avoids infinite representations of COWS terms due to the value-passing nature of communication in COWS and is more amenable for automatic manipulation by analytical tools, such as e.g. equivalence and model checkers. We illustrate our approach through a ‘translation service’ scenario

    Static Safety for an Actor Dedicated Process Calculus by Abstract Interpretation

    Get PDF
    The actor model eases the definition of concurrent programs with non uniform behaviors. Static analysis of such a model was previously done in a data-flow oriented way, with type systems. This approach was based on constraint set resolution and was not able to deal with precise properties for communications of behaviors. We present here a new approach, control-flow oriented, based on the abstract interpretation framework, able to deal with communication of behaviors. Within our new analyses, we are able to verify most of the previous properties we observed as well as new ones, principally based on occurrence counting
    • 

    corecore