642 research outputs found

    Improving Performance of Iterative Methods by Lossy Checkponting

    Get PDF
    Iterative methods are commonly used approaches to solve large, sparse linear systems, which are fundamental operations for many modern scientific simulations. When the large-scale iterative methods are running with a large number of ranks in parallel, they have to checkpoint the dynamic variables periodically in case of unavoidable fail-stop errors, requiring fast I/O systems and large storage space. To this end, significantly reducing the checkpointing overhead is critical to improving the overall performance of iterative methods. Our contribution is fourfold. (1) We propose a novel lossy checkpointing scheme that can significantly improve the checkpointing performance of iterative methods by leveraging lossy compressors. (2) We formulate a lossy checkpointing performance model and derive theoretically an upper bound for the extra number of iterations caused by the distortion of data in lossy checkpoints, in order to guarantee the performance improvement under the lossy checkpointing scheme. (3) We analyze the impact of lossy checkpointing (i.e., extra number of iterations caused by lossy checkpointing files) for multiple types of iterative methods. (4)We evaluate the lossy checkpointing scheme with optimal checkpointing intervals on a high-performance computing environment with 2,048 cores, using a well-known scientific computation package PETSc and a state-of-the-art checkpoint/restart toolkit. Experiments show that our optimized lossy checkpointing scheme can significantly reduce the fault tolerance overhead for iterative methods by 23%~70% compared with traditional checkpointing and 20%~58% compared with lossless-compressed checkpointing, in the presence of system failures.Comment: 14 pages, 10 figures, HPDC'1

    Extending an Application-Level Checkpointing Tool to Provide Fault Tolerance Support to OpenMP Applications

    Get PDF
    [Abstract] Despite the increasing popularity of shared-memory systems, there is a lack of tools for providing fault tolerance support to shared-memory applications. CPPC (ComPiler for Portable Checkpointing) is an application-level checkpointing tool focused on the insertion of fault tolerance into long-running MPI applications. This paper presents an extension to CPPC to allow the checkpointing of OpenMP applications. The proposed solution maintains the main characteristics of CPPC: portability and reduced checkpoint file size. The performance of the proposal is evaluated using the OpenMP NAS Parallel Benchmarks showing that most of the applications present small checkpoint overheads.Ministerio de Economía y Competitividad; TIN2013-42148-

    Analysis of Performance-impacting Factors on Checkpointing Frameworks: The CPPC Case Study

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in The Computer Journal. The final authenticated version is available online at: https://doi.org/10.1093/comjnl/bxr018[Abstract] This paper focuses on the performance evaluation of Compiler for Portable Checkpointing (CPPC), a tool for the checkpointing of parallel message-passing applications. Its performance and the factors that impact it are transparently and rigorously identified and assessed. The tests were performed on a public supercomputing infrastructure, using a large number of very different applications and showing excellent results in terms of performance and effort required for integration into user codes. Statistical analysis techniques have been used to better approximate the performance of the tool. Quantitative and qualitative comparisons with other rollback-recovery approaches to fault tolerance are also included. All these data and comparisons are then discussed in an effort to extract meaningful conclusions about the state-of-the-art and future research trends in the rollback-recovery field.Minsiterio de Ciencia e Innovación; TIN2010-1673

    CPPC: a compiler‐assisted tool for portable checkpointing of message‐passing applications

    Get PDF
    This is the peer reviewed version of the following article: Rodríguez, G. , Martín, M. J., González, P. , Touriño, J. and Doallo, R. (2010), CPPC: a compiler‐assisted tool for portable checkpointing of message‐passing applications. Concurrency Computat.: Pract. Exper., 22: 749-766. doi:10.1002/cpe.1541, which has been published in final form at https://doi.org/10.1002/cpe.1541. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.[Abstract] With the evolution of high‐performance computing toward heterogeneous, massively parallel systems, parallel applications have developed new checkpoint and restart necessities. Whether due to a failure in the execution or to a migration of the application processes to different machines, checkpointing tools must be able to operate in heterogeneous environments. However, some of the data manipulated by a parallel application are not truly portable. Examples of these include opaque state (e.g. data structures for communications support) or diversity of interfaces for a single feature (e.g. communications, I/O). Directly manipulating the underlying ad hoc representations renders checkpointing tools unable to work on different environments. Portable checkpointers usually work around portability issues at the cost of transparency: the user must provide information such as what data need to be stored, where to store them, or where to checkpoint. CPPC (ComPiler for Portable Checkpointing) is a checkpointing tool designed to feature both portability and transparency. It is made up of a library and a compiler. The CPPC library contains routines for variable level checkpointing, using portable code and protocols. The CPPC compiler helps to achieve transparency by relieving the user from time‐consuming tasks, such as data flow and communications analyses and adding instrumentation code. This paper covers both the operation of the CPPC library and its compiler support. Experimental results using benchmarks and large‐scale real applications are included, demonstrating usability, efficiency, and portability.Miniesterio de Educación y Ciencia; TIN2007‐67537‐C03Xunta de Galicia; 2006/

    A Heuristic Approach for the Automatic Insertion of Checkpoints in Message-Passing Codes

    Get PDF
    [Abstract] Checkpointing tools may be typically implemented at two different abstraction levels: at the system level or at the application level. The latter has become a more popular alternative due to its flexibility and the possibility of operating in different environments. However, application-level checkpointing tools often require the user to manually insert checkpoints in order to ensure that certain requirements are met (e.g. forcing checkpoints to be taken at the user code and not inside kernel routines). The approach presented in this work is twofold. First, a spatial coordination protocol for checkpointing parallel SPMD applications is proposed, based on forcing checkpoints to be taken at the same places in the application code by all processes. Thus, global consistency is achieved without adding any new runtime communications or piggybacked data, and without the need to use specific fault-tolerant message-passing implementations. Second, the paper also introduces a compilation technique for the automatic insertion of checkpoints using the spatial coordination protocol, based on a static analysis of communications and a heuristic analysis of computational load. These analyses can also be used to achieve automatic checkpoint insertion in approaches based on classical protocols, such as uncoordinated checkpointing or distributed snapshots.Ministerio de Ciencia e Innovación; TIN-2007-67537-C03-0

    Incorporating Fault-Tolerant Features into Message-Passing Middleware

    Get PDF
    The popularity of MPI-based middleware and applications has led to their wide deployment. Such systems, however, are not inherently reliable and cannot tolerate external faults. This thesis presents a novel model-based approach for exploiting application features and other characteristics to categorize and create AEMs (Application Execution Model). This work realizes MPI/FT(tm), a middleware derived by selective incorporation of fault-tolerant features into MPI/Pro(tm) for two relevant AEMs. This thesis proves the following hypothesis: it is possible to successfully complete select MPI applications even in the presence of external faults, and such fault-tolerance can be achieved with acceptable performance overhead. This work defines parameters to measure the impact of this middleware on performance through faultree and fault-injected overheads. The hypothesis is validated through experimentation and measurement of sample MPI applications for two AEMs
    corecore