85,612 research outputs found

    An Architecture Dynamic Modeling Language for Self-Healing Systems

    Get PDF
    AbstractAs modern software-based systems increase in complexity, recovery from malicious attacks and rectification of system faults become more difficult, labor-intensive, and error-prone. These factors have actuated research dealing with the concept of self-healing systems, which employ architectural models to monitor system behavior and use inputs obtaining therefore to adapt themselves to the run-time environment. Numerous architectural description languages (ADLs) have been developed, each providing complementary capabilities for architectural development and analysis. Unfortunately, few ADLs embrace dynamic change as a fundamental consideration and support a broad class of adaptive changes at the architectural level. The Architecture Dynamic Modeling Language (ADML) is being developed as a new formal language and/or conceptual model for representing dynamic software architectures. TheADML couple the static information provided by the system requirements and the dynamic knowledge provided by tactics, and offer a uniform way to represent and reason about both static and dynamic aspects of self-healing systems. Because the ADML is based on the Dynamic Description Logic DDL, architectural ontology entailment for the ADML languages can be reduced to knowledge base satisfiability in DDL

    Analysis of Software Binaries for Reengineering-Driven Product Line Architecture\^aAn Industrial Case Study

    Full text link
    This paper describes a method for the recovering of software architectures from a set of similar (but unrelated) software products in binary form. One intention is to drive refactoring into software product lines and combine architecture recovery with run time binary analysis and existing clustering methods. Using our runtime binary analysis, we create graphs that capture the dependencies between different software parts. These are clustered into smaller component graphs, that group software parts with high interactions into larger entities. The component graphs serve as a basis for further software product line work. In this paper, we concentrate on the analysis part of the method and the graph clustering. We apply the graph clustering method to a real application in the context of automation / robot configuration software tools.Comment: In Proceedings FMSPLE 2015, arXiv:1504.0301

    Architectural mismatch tolerance

    Get PDF
    The integrity of complex software systems built from existing components is becoming more dependent on the integrity of the mechanisms used to interconnect these components and, in particular, on the ability of these mechanisms to cope with architectural mismatches that might exist between components. There is a need to detect and handle (i.e. to tolerate) architectural mismatches during runtime because in the majority of practical situations it is impossible to localize and correct all such mismatches during development time. When developing complex software systems, the problem is not only to identify the appropriate components, but also to make sure that these components are interconnected in a way that allows mismatches to be tolerated. The resulting architectural solution should be a system based on the existing components, which are independent in their nature, but are able to interact in well-understood ways. To find such a solution we apply general principles of fault tolerance to dealing with arch itectural mismatche

    Exploring Maintainability Assurance Research for Service- and Microservice-Based Systems: Directions and Differences

    Get PDF
    To ensure sustainable software maintenance and evolution, a diverse set of activities and concepts like metrics, change impact analysis, or antipattern detection can be used. Special maintainability assurance techniques have been proposed for service- and microservice-based systems, but it is difficult to get a comprehensive overview of this publication landscape. We therefore conducted a systematic literature review (SLR) to collect and categorize maintainability assurance approaches for service-oriented architecture (SOA) and microservices. Our search strategy led to the selection of 223 primary studies from 2007 to 2018 which we categorized with a threefold taxonomy: a) architectural (SOA, microservices, both), b) methodical (method or contribution of the study), and c) thematic (maintainability assurance subfield). We discuss the distribution among these categories and present different research directions as well as exemplary studies per thematic category. The primary finding of our SLR is that, while very few approaches have been suggested for microservices so far (24 of 223, ?11%), we identified several thematic categories where existing SOA techniques could be adapted for the maintainability assurance of microservices

    A comparative evaluation of dynamic visualisation tools

    Get PDF
    Despite their potential applications in software comprehension, it appears that dynamic visualisation tools are seldom used outside the research laboratory. This paper presents an empirical evaluation of five dynamic visualisation tools - AVID, Jinsight, jRMTool, Together ControlCenter diagrams and Together ControlCenter debugger. The tools were evaluated on a number of general software comprehension and specific reverse engineering tasks using the HotDraw objectoriented framework. The tasks considered typical comprehension issues, including identification of software structure and behaviour, design pattern extraction, extensibility potential, maintenance issues, functionality location, and runtime load. The results revealed that the level of abstraction employed by a tool affects its success in different tasks, and that tools were more successful in addressing specific reverse engineering tasks than general software comprehension activities. It was found that no one tool performs well in all tasks, and some tasks were beyond the capabilities of all five tools. This paper concludes with suggestions for improving the efficacy of such tools

    Software-Architecture Recovery from Machine Code

    Get PDF
    In this paper, we present a tool, called Lego, which recovers object-oriented software architecture from stripped binaries. Lego takes a stripped binary as input, and uses information obtained from dynamic analysis to (i) group the functions in the binary into classes, and (ii) identify inheritance and composition relationships between the inferred classes. The information obtained by Lego can be used for reengineering legacy software, and for understanding the architecture of software systems that lack documentation and source code. Our experiments show that the class hierarchies recovered by Lego have a high degree of agreement---measured in terms of precision and recall---with the hierarchy defined in the source code

    Information Technology of Software Architecture Structural Synthesis of Information System

    Get PDF
    Information technology of information system software architecture structural synthesis is proposed. It is used for evolutionary models of the software lifecycle, which provides configuration and formation of software to control the realization and recovery of computing processes in parallel and distributed computing resources structures. The technology is applied in the framework of the software requirements analysis, design of architecture, design and integration of software. Method of combining vertices for multilevel graph model of software architecture and automata-based method of checking performance limitations to software are based on the advanced graph model of software architecture. These methods are proposed in the framework of information technology and allow forming a rational structure of the program, as well as checking for compliance with the functional and non-functional requirements of the end user.The essence of proposed information technology is in displaying of the customer's requirements in the current version of the graph model of program complex structure and providing a reconfiguration of the system modules. This process is based on the analysis and processing of the graph model, software module specifications, formation of software structure in accordance with the graph model, software verification and its compilation
    • …
    corecore