1,113 research outputs found

    A program analysis framework for tccp based on abstract interpretation

    Get PDF
    [EN] The timed concurrent constraint language (tccp) is a timed extension of the concurrent constraint paradigm. tccp was defined to model reactive systems, where infinite behaviors arise naturally. In previous works, a semantic framework and abstract diagnosis method for the language have been defined. On the basis of that semantic framework, this paper proposes an abstract semantics that, together with a widening operator, is suitable for the definition of different analyses for tccp programs. The abstract semantics is correct and can be represented as a finite graph where each node represents a hypothetical (abstract) computational step of the program. The widening operator allows us to guarantee the convergence of the abstract fixpoint computation.This author has been supported by the Andalusian Excellence Project P11-TIC-7659. This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grants TIN 2015-69175-C4-1-R and TIN 2013-45732-C4-1-P and by Generalitat Valenciana PROMETEOII/2015/013Comini, M.; Gallardo, M.; Titolo, L.; Villanueva, A. (2017). A program analysis framework for tccp based on abstract interpretation. Formal Aspects of Computing. 29(3):531-557. https://doi.org/10.1007/s00165-016-0409-8S531557293Alpuente M, Gallardo MM, Pimentel E, Villanueva A (2006) A semantic framework for the abstract model checking of tccp programs. Theor Comput Scie 346(1): 58–95Bagnara R, Hill PM., Ricci E, Zaffanella E (2005) Precise widening operators for convex polyhedra. Sci Comput Program 58(1–2):28–56Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on principles of programming languages, Los Angeles, California, January 17–19. ACM Press, New York, pp 238–252Clarke EM, Grumberg O, Jha S, Lu Y, Veith H (2000) Counterexample-guided abstraction refinement. In: CAV, Lecture Notes in Computer Science, vol 1855. Springer, pp 154–169Comini M, Gallardo MM, Titolo L, Villanueva A (2015) Abstract Analysis of Universal Properties for tccp. In: Falaschi M (ed) Logic-based Program Synthesis and Transformation, 25th International Symposium, LOPSTR 2015. Revised Selected Papers, Lecture Notes in Computer Science, vol 9527. Springer, pp 163–178Comini M, Titolo L, Villanueva A (2011) Abstract diagnosis for timed concurrent constraint programs. Theory Pract Logic Programm 11(4-5):487–502Comini M, Titolo L, Villanueva A (2013) A condensed goal-independent bottom-up fixpoint modeling the behavior of tccp. Technical report, DSIC, Universitat Politècnica de València. http://riunet.upv.es/handle/10251/34328de Boer FS, Gabbrielli M, Meo MC (2000) A timed concurrent constraint language. Inf Comput 161(1): 45–83Falaschi M, Gabbrielli M, Marriott K, Palamidessi C (1993) Compositional analysis for concurrent constraint programming. In: Proceedings of the eighth annual IEEE symposium on logic in computer science, Los Alamitos, CA, USA, IEEE Computer Society Press, pp 210–221Falaschi M, Olarte C, Palamidessi C (2015) Abstract interpretation of temporal concurrent constraint programs. Theory and Pract Logic Program (TPLP) 15(3): 312–357Falaschi M, Villanueva A (2006) Automatic verification of timed concurrent constraint programs. Theory Pract Logic Program 6(3): 265–300Gallardo MM, Merino P, Pimentel E (2002) Refinement of LTL formulas for abstract model checking. In: Static analysis, 9th international symposium, SAS 2002, Madrid, Spain, September 17–20, 2002, Proceedings, pp 395–410Saraswat VA (1993) Concurrent constraint programming. The MIT Press, CambridgeSaraswat VA, Rinard M, Panangaden P (1991) The semantic foundations of concurrent constraint programming. In: Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on principles of programming languages. ACM, New York, pp 333–352Zaffanella E, Giacobazzi R, Levi G (1997) Abstracting synchronization in concurrent constraint programming. J Funct Logic Program (6

    An Overview of Ciao and its uses of DataLog for Program Analysis and Optimization

    Full text link
    -Objectives: •Next-generation, high-level, multiparadigm programming language: Ciao. •Program development environments which perform, as part of compilation: Verification / debugging(i.e., detect bugs and offer guarantees of safety, reliability, and efficiency.) Optimization (optimized compilation, parallelization, ...)Using throughout techniques that are at the same time rigorous and practical. •Apply in a real system, with users –reality check! •Support also mainstream languages (e.g., Java / Java bytecode). - Several uses of Datalog and related techniques

    Constraint-Based Abstraction of a Model Checker for Infinite State Systems

    Get PDF
    Abstract. Abstract interpretation-based model checking provides an approach to verifying properties of infinite-state systems. In practice, most previous work on abstract model checking is either restricted to verifying universal properties, or develops special techniques for temporal logics such as modal transition sys-tems or other dual transition systems. By contrast we apply completely standard techniques for constructing abstract interpretations to the abstraction of a CTL semantic function, without restricting the kind of properties that can be verified. Furthermore we show that this leads directly to implementation of abstract model checking algorithms for abstract domains based on constraints, making use of an SMT solver.

    Formal verification of safety protocol in train control system

    Get PDF
    In order to satisfy the safety-critical requirements, the train control system (TCS) often employs a layered safety communication protocol to provide reliable services. However, both description and verification of the safety protocols may be formidable due to the system complexity. In this paper, interface automata (IA) are used to describe the safety service interface behaviors of safety communication protocol. A formal verification method is proposed to describe the safety communication protocols using IA and translate IA model into PROMELA model so that the protocols can be verified by the model checker SPIN. A case study of using this method to describe and verify a safety communication protocol is included. The verification results illustrate that the proposed method is effective to describe the safety protocols and verify deadlocks, livelocks and several mandatory consistency properties. A prototype of safety protocols is also developed based on the presented formally verifying method

    Interim research assessment 2003-2005 - Computer Science

    Get PDF
    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities

    Timed Analysis of Security Protocols

    Get PDF
    We propose a method for engineering security protocols that are aware of timing aspects. We study a simplified version of the well-known Needham Schroeder protocol and the complete Yahalom protocol, where timing information allows the study of different attack scenarios. We model check the protocols using UPPAAL. Further, a taxonomy is obtained by studying and categorising protocols from the well known Clark Jacob library and the Security Protocol Open Repository (SPORE) library. Finally, we present some new challenges and threats that arise when considering time in the analysis, by providing a novel protocol that uses time challenges and exposing a timing attack over an implementation of an existing security protocol
    corecore