1,548 research outputs found

    Comprehensive synchronization elimination for Java

    Get PDF
    AbstractIn this paper, we describe three novel analyses for eliminating unnecessary synchronization that remove over 70% of dynamic synchronization operations on the majority of our 15 benchmarks and improve the bottom-line performance of three by 37–53%. Our whole-program analyses attack three frequent forms of unnecessary synchronization: thread-local synchronization, reentrant synchronization, and enclosed lock synchronization. We motivate the design of our analyses with a study of the kinds of unnecessary synchronization found in a suite of single- and multi-threaded benchmarks of different sizes and drawn from a variety of domains. We analyze the performance of our optimizations in terms of dynamic operations removed and run-time speedup. We also show that our analyses may enable the use of simpler synchronization models than the model found in Java, at little or no additional cost in execution time. The synchronization optimizations, we describe enable programmers to design efficient, reusable and maintainable libraries and systems in Java without cumbersome manual code restructuring

    Effective synchronization removal for Java

    Full text link

    Development of a static analysis tool to find securty vulnerabilities in java applications

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2010Includes bibliographical references (leaves: 57-60)Text in English Abstract: Turkish and Englishix, 77 leavesThe scope of this thesis is to enhance a static analysis tool in order to find security limitations in java applications. This will contribute to the removal of some of the existing limitations related with the lack of java source codes. The generally used tools for a static analysis are FindBugs, Jlint, PMD, ESC/Java2, Checkstyle. In this study, it is aimed to utilize PMD static analysis tool which already has been developed to find defects Possible bugs (empty try/catch/finally/switch statements), Dead code (unused local variables, parameters and private methods), Suboptimal code (wasteful String/StringBuffer usage), Overcomplicated expressions (unnecessary if statements for loops that could be while loops), Duplicate code (copied/pasted code means copied/pasted bugs). On the other hand, faults possible unexpected exception, length may be less than zero, division by zero, stream not closed on all paths and should be a static inner class cases were not implemented by PMD static analysis tool. PMD performs syntactic checks and dataflow analysis on program source code.In addition to some detection of clearly erroneous code, many of the .bugs. PMD looks for are stylistic conventions whose violation might be suspicious under some circumstances. For example, having a try statement with an empty catch block might indicate that the caught error is incorrectly discarded. Because PMD includes many detectors for bugs that depend on programming style, PMD includes support for selecting which detectors or groups of detectors should be run. While PMD.s main structure was conserved, boundary overflow vulnerability rules have been implemented to PMD

    Workload characterization of JVM languages

    Get PDF
    Being developed with a single language in mind, namely Java, the Java Virtual Machine (JVM) nowadays is targeted by numerous programming languages. Automatic memory management, Just-In-Time (JIT) compilation, and adaptive optimizations provided by the JVM make it an attractive target for different language implementations. Even though being targeted by so many languages, the JVM has been tuned with respect to characteristics of Java programs only -- different heuristics for the garbage collector or compiler optimizations are focused more on Java programs. In this dissertation, we aim at contributing to the understanding of the workloads imposed on the JVM by both dynamically-typed and statically-typed JVM languages. We introduce a new set of dynamic metrics and an easy-to-use toolchain for collecting the latter. We apply our toolchain to applications written in six JVM languages -- Java, Scala, Clojure, Jython, JRuby, and JavaScript. We identify differences and commonalities between the examined languages and discuss their implications. Moreover, we have a close look at one of the most efficient compiler optimizations - method inlining. We present the decision tree of the HotSpot JVM's JIT compiler and analyze how well the JVM performs in inlining the workloads written in different JVM languages

    Sound Thread Local Analysis for Lockset-Based Dynamic Data Race Detection

    Get PDF
    Multithreading is a powerful model of parallel and concurrent programming. However, the presence of shared data leaves multithreaded programs vulnerable to concurrency errors such as data races, where two threads access and modify the same data concurrently and without synchronization. Data races lead to unpredictable program behavior and can be a source of data corruption. This work improves the precision of lockset-based dynamic data race detection without compromising soundness. Typically, lockset-based algorithms are sound but extremely imprecise. The algorithms presented in this work improve the precision of such algorithms by including thread-tracking information. Thread tracking helps detect patterns of intermittent thread-locality of shared data and eliminate false errors while still reporting all true errors. Experimental results show that thread-local analysis preserves soundness and improves precision of lockset-based data race detection by an average of 82%, with run-time slowdowns of less than 17%
    • …
    corecore