59,502 research outputs found

    Heap Abstractions for Static Analysis

    Full text link
    Heap data is potentially unbounded and seemingly arbitrary. As a consequence, unlike stack and static memory, heap memory cannot be abstracted directly in terms of a fixed set of source variable names appearing in the program being analysed. This makes it an interesting topic of study and there is an abundance of literature employing heap abstractions. Although most studies have addressed similar concerns, their formulations and formalisms often seem dissimilar and some times even unrelated. Thus, the insights gained in one description of heap abstraction may not directly carry over to some other description. This survey is a result of our quest for a unifying theme in the existing descriptions of heap abstractions. In particular, our interest lies in the abstractions and not in the algorithms that construct them. In our search of a unified theme, we view a heap abstraction as consisting of two features: a heap model to represent the heap memory and a summarization technique for bounding the heap representation. We classify the models as storeless, store based, and hybrid. We describe various summarization techniques based on k-limiting, allocation sites, patterns, variables, other generic instrumentation predicates, and higher-order logics. This approach allows us to compare the insights of a large number of seemingly dissimilar heap abstractions and also paves way for creating new abstractions by mix-and-match of models and summarization techniques.Comment: 49 pages, 20 figure

    Static Analysis of Functional Programs

    Get PDF
    In this paper, the static analysis of programs in the functional programming language Miranda* is described based on two graph models. A new control-flow graph model of Miranda definitions is presented, and a model with four classes of callgraphs. Standard software metrics are applicable to these models. A Miranda front end for Prometrix, Âż, a tool for the automated analysis of flowgraphs and callgraphs, has been developed. This front end produces the flowgraph and callgraph representations of Miranda programs. Some features of the metric analyser are illustrated with an example program. The tool provides a promising access to standard metrics on functional programs

    Static Analysis for Systems Biology

    Get PDF
    This paper shows how static analysis techniques can help understanding biological systems. Based on a simple example will illustrate the outcome of performing three different analyses extracting information of increasing precision. We conclude by reporting on the potential impact and exploitation of these techniques in systems biology

    Static Analysis of Deterministic Negotiations

    Full text link
    Negotiation diagrams are a model of concurrent computation akin to workflow Petri nets. Deterministic negotiation diagrams, equivalent to the much studied and used free-choice workflow Petri nets, are surprisingly amenable to verification. Soundness (a property close to deadlock-freedom) can be decided in PTIME. Further, other fundamental questions like computing summaries or the expected cost, can also be solved in PTIME for sound deterministic negotiation diagrams, while they are PSPACE-complete in the general case. In this paper we generalize and explain these results. We extend the classical "meet-over-all-paths" (MOP) formulation of static analysis problems to our concurrent setting, and introduce Mazurkiewicz-invariant analysis problems, which encompass the questions above and new ones. We show that any Mazurkiewicz-invariant analysis problem can be solved in PTIME for sound deterministic negotiations whenever it is in PTIME for sequential flow-graphs---even though the flow-graph of a deterministic negotiation diagram can be exponentially larger than the diagram itself. This gives a common explanation to the low-complexity of all the analysis questions studied so far. Finally, we show that classical gen/kill analyses are also an instance of our framework, and obtain a PTIME algorithm for detecting anti-patterns in free-choice workflow Petri nets. Our result is based on a novel decomposition theorem, of independent interest, showing that sound deterministic negotiation diagrams can be hierarchically decomposed into (possibly overlapping) smaller sound diagrams.Comment: To appear in the Proceedings of LICS 2017, IEEE Computer Societ

    Sawja: Static Analysis Workshop for Java

    Get PDF
    Static analysis is a powerful technique for automatic verification of programs but raises major engineering challenges when developing a full-fledged analyzer for a realistic language such as Java. This paper describes the Sawja library: a static analysis framework fully compliant with Java 6 which provides OCaml modules for efficiently manipulating Java bytecode programs. We present the main features of the library, including (i) efficient functional data-structures for representing program with implicit sharing and lazy parsing, (ii) an intermediate stack-less representation, and (iii) fast computation and manipulation of complete programs

    Stratified Static Analysis Based on Variable Dependencies

    Get PDF
    In static analysis by abstract interpretation, one often uses widening operators in order to enforce convergence within finite time to an inductive invariant. Certain widening operators, including the classical one over finite polyhedra, exhibit an unintuitive behavior: analyzing the program over a subset of its variables may lead a more precise result than analyzing the original program! In this article, we present simple workarounds for such behavior

    Towards Energy Consumption Verification via Static Analysis

    Full text link
    In this paper we leverage an existing general framework for resource usage verification and specialize it for verifying energy consumption specifications of embedded programs. Such specifications can include both lower and upper bounds on energy usage, and they can express intervals within which energy usage is to be certified to be within such bounds. The bounds of the intervals can be given in general as functions on input data sizes. Our verification system can prove whether such energy usage specifications are met or not. It can also infer the particular conditions under which the specifications hold. To this end, these conditions are also expressed as intervals of functions of input data sizes, such that a given specification can be proved for some intervals but disproved for others. The specifications themselves can also include preconditions expressing intervals for input data sizes. We report on a prototype implementation of our approach within the CiaoPP system for the XC language and XS1-L architecture, and illustrate with an example how embedded software developers can use this tool, and in particular for determining values for program parameters that ensure meeting a given energy budget while minimizing the loss in quality of service.Comment: Presented at HIP3ES, 2015 (arXiv: 1501.03064
    • …