84,433 research outputs found

    Rotorcraft-based emergency medical services in the Caribbean Basin

    Get PDF
    There is a pressing need for improved health care in general and emergency health care in particular throughout the Caribbean Basin. The importance of rotorcraft as an integral part of the needed system of emergency medical care in the region was investigated. Many of the larger countries in the region currently have the needed infrastructure to implement a national system of rotorcraft-based emergency medical centers within their borders. By helping to establish a system of rotorcraft based health care centers in strategic locations in the Lesser Antilles, the U.S. can assist the islands of the region by demonstrating the concept and establishing a potential training site for the other larger countries of the region. There is sufficient demand for rotorcraft based emergency health care within the Lesser Antilles to locate one center on the island of Puerto Rico and another one of the southern-most islands. With the use of fixed wing aircraft or long range helicopters, the two rotorcraft based centers could provide the region with rapid and efficient emergency health care. The superior speed and range of the XV-15 Tilt Rotor aircraft make it an attractive possibility for emergency transport and rescue in this region

    HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation

    Full text link
    Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing nterest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized both local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. In addition, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.Comment: 15 pages, 9 figure

    The Public Investment in Atomic Power Development

    Get PDF

    Segregating Transgenic Grains:Results of a Survey Among Country Elevators in South Dakota

    Get PDF
    Using responses from a mail survey conducted among 203 South Dakota grain elevator managers in 2002, we analyzed the degree to which their elevators were prepared to segregate non-transgenic from commodity grains. Results showed four percent of the managers expected their own, and ten percent expected a competing elevator be dedicated to handling only non-transgenic or identity preserved grains within five years. Only four and one percent of the elevators handled non-transgenic corn and soybeans, respectively, and only one percent participated in identity preserved grains. One in five elevator managers in the state reported having tested corn for transgenic material, and none of the respondents conducted any genetic testing for soybeans in 2001. Further, 17 and two percent reported having buyers inquire about segregated non-transgenic or identity preserved corn, and such soybeans, respectively. Among those handling corn (soybeans), 29 (30) percent was familiar with the non-transgenic corn (soybean) market and 53 (58) percent was willing to participate in these markets at an average premium of 28 (37) cents per bushel. One in five elevators are able to participate in segregating non-transgenic and commodity grains without additional capital outlays. Thus, if a sizable demand for non-transgenic grains develops, the South Dakota grain handling industry appears ready to deal with it.transgenic, grain segregation, Agricultural Experiment Station

    Performance-Based Financing: Report on Feasibility and Implementation Options Final September 2007

    Get PDF
    This study examines the feasibility of introducing a performance-related bonus scheme in the health sector. After describing the Tanzania health context, we define “Performance-Based Financing”, examine its rationale and review the evidence on its effectiveness. The following sections systematically assess the potential for applying the scheme in Tanzania. On the basis of risks and concerns identified, detailed design options and recommendations are set out. The report concludes with a (preliminary) indication of the costs of such a scheme and recommends a way forward for implementation. We prefer the name “Payment for Performance” or “P4P”. This is because what is envisaged is a bonus payment that is earned by meeting performance targets1. The dominant financing for health care delivery would remain grant-based as at present. There is a strong case for introducing P4P. Its main purpose will be to motivate front-line health workers to improve service delivery performance. In recent years, funding for council health services has increased dramatically, without a commensurate increase in health service output. The need to tighten focus on results is widely acknowledged. So too is the need to hold health providers more accountable for performance at all levels, form the local to the national. P4P is expected to encourage CHMTs and health facilities to “manage by results”; to identify and address local constraints, and to find innovative ways to raise productivity and reach under-served groups. As well as leveraging more effective use of all resources, P4P will provide a powerful incentive at all levels to make sure that HMIS information is complete, accurate and timely. It is expected to enhance accountability between health facilities and their managers / governing committees as well as between the Council Health Department and the Local Government Authority. Better performance-monitoring will enable the national level to track aggregate progress against goals and will assist in identifying under-performers requiring remedial action. We recommend a P4P scheme that provides a monetary team bonus, dependent on a whole facility reaching facility-specific service delivery targets. The bonus would be paid quarterly and shared equally among health staff. It should target all government health facilities at the council level, and should also reward the CHMT for “whole council” performance. All participating facilities/councils are therefore rewarded for improvement rather than absolute levels of performance. Performance indicators should not number more than 10, should represent a “balanced score card” of basic health service delivery, should present no risk of “perverse incentive” and should be readily measurable. The same set of indicators should be used by all. CHMTs would assist facilities in setting targets and monitoring performance. RHMTs would play a similar role with respect to CHMTs. The Council Health Administration would provide a “check and balance” to avoid target manipulation and verify bonus payments due. The major constraint on feasibility is the poor state of health information. Our study confirmed the findings of previous ones, observing substantial omission and error in reports from facilities to CHMTs. We endorse the conclusion of previous reviewers that the main problem lies not with HMIS design, but with its functioning. We advocate a particular focus on empowering and enabling the use of information for management by facilities and CHMTs. We anticipate that P4P, combined with a major effort in HMIS capacity building – at the facility and council level – will deliver dramatic improvements in data quality and completeness. We recommend that the first wave of participating councils are selected on the basis that they can first demonstrate robust and accurate data. We anticipate that P4P for facilities will not deliver the desired benefits unless they have a greater degree of control to solve their own problems. We therefore propose - as a prior and essential condition – the introduction of petty cash imprests for all health facilities. We believe that such a measure would bring major benefits even to facilities that have not yet started P4P. It should also empower Health Facility Committees to play a more meaningful role in health service governance at the local level. We recommend to Government that P4P bonuses, as described here, are implemented across Mainland Tanzania on a phased basis. The main constraint on the pace of roll-out is the time required to bring information systems up to standard. Councils that are not yet ready to institute P4P should get an equivalent amount of money – to be used as general revenue to finance their comprehensive council health plans. We also recommend that up-to-date reporting on performance against service delivery indicators is made a mandatory requirement for all councils and is also agreed as a standard requirement for the Joint Annual Health Sector Review. P4P can also be applied on the “demand-side” – for example to encourage women to present in case of obstetric emergencies. There is a strong empirical evidence base from other countries to demonstrate that such incentives can work. We recommend a separate policy decision on whether or not to introduce demand-side incentives. In our view, they are sufficiently promising to be tried out on an experimental basis. When taken to national scale (all councils, excepting higher level hospitals), the scheme would require annual budgetary provision of about 6 billion shillings for bonus payments. This is equivalent to 1% of the national health budget, or about 3% of budgetary resources for health at the council level. We anticipate that design and implementation costs would amount to about 5 billion shillings over 5 years – the majority of this being devoted to HMIS strengthening at the facility level across the whole country

    Policies and Procedures for the Termination of War Contracts

    Get PDF
    The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices
    corecore