13,706 research outputs found

    Fuzzy H-infinity output feedback control of nonlinear systems under sampled measurements

    Get PDF
    This paper studies the problem of designing an H∞ fuzzy feedback control for a class of nonlinear systems described by a continuous-time fuzzy system model under sampled output measurements. The premise variables of the fuzzy system model are allowed to be unavailable. We develop a technique for designing an H∞ fuzzy feedback control that guarantees the L2 gain from an exogenous input to a controlled output is less than or equal to a prescribed value. A design algorithm for constructing the H∞ fuzzy feedback controller is given

    Evaluation of error bound for a DT sliding mode control with disturbance observer

    Get PDF
    In this paper an estimate of the upper bound of control error for discrete-time implementation of a Sliding Mode Control (DTSMC) combined with disturbance observer is investigated. Having in mind application to PZT high bandwidth actuators and since high accuracy is required the special attention is paid to avoid chattering. Selected structure of proposed SMC controller is proven to offer chattering-free motion. The proposed structure also avoids deadbeat poles that are the cause of large control action which is not desirable in practical applications. The proposed scheme is shown to allow a maximum error bound of O(T) for the system with disturbance. The main disturbances are represented by hysteresis and the time variation of the piezo stack parameters. The evaluation of the upper bound of error in such a system is shown and experimentally verified. Closed-loop experiments are presented using the proposed method to verify the theoretical results

    Yet Another Tutorial of Disturbance Observer: Robust Stabilization and Recovery of Nominal Performance

    Full text link
    This paper presents a tutorial-style review on the recent results about the disturbance observer (DOB) in view of robust stabilization and recovery of the nominal performance. The analysis is based on the case when the bandwidth of Q-filter is large, and it is explained in a pedagogical manner that, even in the presence of plant uncertainties and disturbances, the behavior of real uncertain plant can be made almost similar to that of disturbance-free nominal system both in the transient and in the steady-state. The conventional DOB is interpreted in a new perspective, and its restrictions and extensions are discussed

    A study on high accuracy discrete-time sliding mode control

    Get PDF
    In this paper a Discrete-Time Sliding-Mode based controller design for high accuracy motion control systems is presented. The controller is designed for a general SISO system with nonlinearity and external disturbance. Closed-Loop behavior of the general system with the proposed control and Lyapunov stability is shown and the error of the closed loop system is proven to be within an o(T2). The proposed controller is applied to a stage driven by a piezo drive that is known to suffer from hysteresis nonlinearity in the control gain. Proposed SMC controller is proven to offer chattering-free motion and rejection of the disturbances represented by hysteresis and the time variation of the piezo drive parameters. As a separate idea to enhance the accuracy of the closed loop system a combination of disturbance rejection method and the SMC controller is explored and its effectiveness is experimentally demonstrated. Closed-loop experiments are presented using PID controller with and without disturbance compensation and Sliding-Mode Controller with and without disturbance compensation for the purpose of comparison

    Observer-based networked control for continuous-time systems with random sensor delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2009 Elsevier LtdThis paper is concerned with the networked control system design for continuous-time systems with random measurement, where the measurement channel is assumed to subject to random sensor delay. A design scheme for the observer-based output feedback controller is proposed to render the closed-loop networked system exponentially mean-square stable with H∞ performance requirement. The technique employed is based on appropriate delay systems approach combined with a matrix variable decoupling technique. The design method is fulfilled through solving linear matrix inequalities. A numerical example is used to verify the effectiveness and the merits of the present results.This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor George Yin under the direction of Editor Ian R. Petersen. This work was supported in part by the Royal Society of the UK, the National Natural Science Foundation of China (60774047, 60674055) and the Taishan Scholar Programs Foundation of Shandong Province, China
    corecore