372 research outputs found

    The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry

    Get PDF
    The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview

    The Generality of the GUGA MRCI Approach in COLUMBUS for Treating Complex Quantum Chemistry

    Get PDF
    The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calcu- lations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of dia- batization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully vari- ational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on stan- dard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview

    Uncertainty Estimates for Theoretical Atomic and Molecular Data

    Get PDF
    Sources of uncertainty are reviewed for calculated atomic and molecular data that are important for plasma modeling: atomic and molecular structure and cross sections for electron-atom, electron-molecule, and heavy particle collisions. We concentrate on model uncertainties due to approximations to the fundamental many-body quantum mechanical equations and we aim to provide guidelines to estimate uncertainties as a routine part of computations of data for structure and scattering.Comment: 65 pages, 18 Figures, 3 Tables. J. Phys. D: Appl. Phys. Final accepted versio

    A simplified charge projection scheme for long-range electrostatics in ab initio QM/MM calculations

    Get PDF
    In a previous work [Pan et al., Molecules 23, 2500 (2018)], a charge projection scheme was reported, where outer molecular mechanical (MM) charges [>10 Å from the quantum mechanical (QM) region] were projected onto the electrostatic potential (ESP) grid of the QM region to accurately and efficiently capture long-range electrostatics in ab initio QM/MM calculations. Here, a further simplification to the model is proposed, where the outer MM charges are projected onto inner MM atom positions (instead of ESP grid positions). This enables a representation of the long-range MM electrostatic potential via augmentary charges (AC) on inner MM atoms. Combined with the long-range electrostatic correction function from Cisneros et al. [J. Chem. Phys. 143, 044103 (2015)] to smoothly switch between inner and outer MM regions, this new QM/MM-AC electrostatic model yields accurate and continuous ab initio QM/MM electrostatic energies with a 10 Å cutoff between inner and outer MM regions. This model enables efficient QM/MM cluster calculations with a large number of MM atoms as well as QM/MM calculations with periodic boundary conditions

    Development and Validation of the REMP and OO-REMP Hybrid Perturbation Theories

    Get PDF
    In dieser Arbeit werden die hybriden Störungstheorien REMP und OO-REMP zur Be- rechnung der elektronischen Korrelationsenergie von Atomen und MolekĂŒlen eingefĂŒhrt und validiert. Es handelt sich dabei um quantenchemische Methoden im Formalismus der Rayleigh-Schrödinger-Störungstheorie, fĂŒr die hier die Energie 2. Ordnung untersucht wird. Basierend auf den Partitionierungen der MĂžller-Plesset- (MP) und der Anregungsgrader- haltenden Störungstheorie (Retaining the excitation Degree=RE) wird ein ungestörter Hamiltonoperator mit zugehörigem Störoperator definiert, der sich aus einer gewichteten Summe der vorgenannten Methoden zusammensetzt, wodurch die REMP-Methode defi- niert ist. Die neuartige Partitionierung nutzt komplementĂ€re Fehler der zugrunde liegenden Methoden zur internen Fehlerkompensation. In dieser Arbeit werden Energien bis zur 2. Ordnung der Störungstheorie untersucht. Es wird gezeigt, dass die REMP-Partitionierung des elektronischen Hamiltonoperators zu systematisch besseren Ergebnissen fĂŒhrt als jede der Einzelmethoden allein, wobei die Parametrisierung der Mischung universell und praktisch systemunabhĂ€ngig ist. Dies wird am Beispiel unterschiedlicher Typen von Reaktionsenergien und Gleichgewichtsstrukturen, Schwingungswellenzahlen und elektri- schen Dipolmomenten kleiner MolekĂŒle demonstriert. Es wird außerdem ein variationelles Energiefunktional definiert, das auf der Hybridpartitionierung basiert. Dabei wird die Form der besetzen MolekĂŒlorbitale variiert und so optimiert, dass die Gesamtenergie minimal wird. Die Minimierung dieses Funktionals bezĂŒglich aller variationellen Para- meter liefert Ergebnisse, die die der kanonischen Methode systematisch ĂŒbertreffen. Die vollstĂ€ndig variationelle Methode zeichnet sich zudem durch hervorragende rechnerische Effizienz bei der Vorhersage molekularer Eigeschaften aus. Es wird gezeigt, dass insbeson- dere die vollstĂ€ndig variationelle, orbitaloptimierte Variante (OO-REMP) den Kriterien allgemein anwendbarer Quantenchemiemethoden genĂŒgt und hochgenaue Ergebnisse produziert. Die Validierungen legen nahe, dass OO-REMP fĂŒr single-reference-Systeme fĂŒr die meisten Thermochmie-TestsĂ€tze chemische Genauigkeit erreicht (Root mean square-Fehler â©œ1 kcal mol−1 ). Die neu entwickelten Methoden wurden in ein quelloffenes Quantenchemieprogramm implementiert und stehen nun jedermann zur VerfĂŒgung.In this work, the hybrid perturbation theories REMP and OO-REMP for the calculation of electronic correlation energies of atoms and molecules are introduced and validated. These are quantum chemical methods in the framework of Rayleigh-Schrödinger perturbation theory, whose second order energy is investigated here. Based on the partitionings of the MĂžller-Plesset (MP) and the Retaining the Excitation Degree (RE) perturbation theory, an unperturbed Hamiltonian with a corresponding perturbation operator is defined, which is a weighted sum of the previous methods, thereby defining the REMP method. The novel partitioning has the property to exploit complementary errors of the parent methods for internal error compensation. In this work, energies up to 2nd order in perturbation theory are investigated. It is shown that the REMP partitioning of the electronic Hamiltonian leads to systematically better results than each of the original methods, with the important aspect that the parameterization of the mixture is universal and practically independent of the system considered. This is demonstrated with the example various types of reaction energies and equilibrium structures, vibrational wavenumbers, and electric dipole moments of small molecules. Furthermore, a variational energy functional based on the hybrid partitioning is defined. Here, the shape of the occupied molecular orbitals is varied and optimized such, that the total energy becomes minimal. The minimization of this functional with respect to all variational parameters provides results which systematically surpass those of the canonical method. The fully variational method is furthermore characterized by outstanding computational efficiency regarding the prediction of molecular properties. It is shown that especially the fully variational, orbital-optimized variant suffices the criteria of a generally applicable quantum chemical method and does produce highly accurate results. The validations imply that for single-reference systems OO-REMP reaches chemical accuracy (root mean square error â©œ1 kcal mol−1) for most of the thermodynamic test sets. The newly developed methods were implemented in an open-source quantum chemistry program package and are now available to everyone

    Variational calculations of rotation-vibration spectra for small molecules of astrophysical interest

    Get PDF
    Variational calculations of rotation-vibration spectra are presented for a range of four- and five-atom molecules of atmospheric and astrophysical importance. Using state-of-the-art electronic structure methods, new nine-dimensional potential energy and dipole moment surfaces are constructed for methyl chloride (CH3Cl), silane (SiH4), and methane (CH4). The respective surfaces are rigorously evaluated against high-resolution spectroscopic data from a variety of experimental sources. The ab initio potential energy surfaces represent some of the most accurate to date, whilst intensity simulations utilizing the dipole moment surfaces show good agreement with experiment. A novel application of rotation-vibration computations is introduced to investigate the sensitivity of spectral lines to a possible space-time variation of the proton-to-electron mass ratio Ό. The approach relies on finding the mass dependence of the computed energy levels and is only possible because of the remarkable accuracy of variational calculations. Highly sensitive transitions are uncovered for ammonia (NH3) and the hydronium cation (H3O+) which could lead to a tighter constraint on a varying Ό. An advantage of the variational approach is that Einstein A coefficients can be determined to help guide future laboratory and astronomical observations. This thesis demonstrates the current capabilities of variational calculations of rotation-vibration spectra and highlights the challenges faced by the field

    Development and Application of Efficient Methods for the Computation of Electronic Spectra of Large Systems

    Get PDF
    In this thesis, an efficient procedure to compute electronic excitation spectra of molecular systems is presented, focusing particularly on the computation of electronic circular dichroism (ECD) spectra. ECD spectroscopy is commonly used to distinguish between the two enantiomers of a chiral compound. Due to a strong sensitivity to the three-dimensional structure, reliable simulation of ECD spectra of solvated molecules by quantum chemical methods requires the knowledge of the relevant conformers along with the corresponding ECD signals (i.e., the individual transition intensities and energies) and Boltzmann populations. The latter point can be addressed by an established thermochemical protocol. It combines electronic energies computed in gas phase by dispersion-corrected density functional theory (DFT-D) with nuclear ro-vibrational and solvation contributions to yield the free energies in solution. This model is applied to study the association of two intermolecular frustrated Lewis pairs (FLPs). Though this case study does not aim at computing an ECD spectrum, it provides insight on whether such a scheme could also be suited to rank conformers in solution. Comparison to high-level reference methods and partially available experimental data suggests that the largest uncertainty can be attributed to the implicit solvation model. The errors for different dimer arrangements, however, appear to be within the order of 1 kcal mol-1, which is encouraging for the pursued computation of conformer free energies. In combination with a quadruple-ζ basis set, hybrid DFT-D methods like the PW6B95-D3 are almost converged with respect to a complete basis and provide satisfactory results for the electronic energy contribution. Hence, they are recommended choices for the final electronic structure level to rank different conformers in routine calculations. The major part of this thesis deals with the development and application of cost-efficient excited state methods. The current state-of-the-art to compute ECD spectra for systems with roughly 100 atoms is the time-dependent density functional theory (TD-DFT) approach. Based on the latter, the simplified TD-DFT (sTD-DFT) method is developed. The excited state treatment is accelerated by at least three orders of magnitude, resulting from semiempirically approximated two-electron integrals and a significant reduction of the involved matrix dimensions. The introduced approximations are in line with the ones in the previously presented simplified Tamm-Dancoff approximated TD-DFT (sTDA-DFT). It is shown that the sTD-DFT and the sTDA-DFT approaches provide roughly the same accuracy for vertical excitation energies, as well as absorption and ECD spectra, as their parental schemes, i.e., TD-DFT and Tamm-Dancoff approximated TD-DFT (TDA-DFT), respectively. Thus, sTD-DFT is an efficient approach that is suitable for the computation of ECD spectra. Furthermore, sTD-DFT calculations conducted on "snapshots" from molecular dynamics (MD) simulations offer an appealing way to effectively incorporate vibronic effects without a quantum mechanical (QM) treatment of the nuclei. Such a treatment is exemplified for [16]helicene (102 atoms) and a di-substituted derivative (164 atoms). While the feasibility of applying sTDA-DFT to very large systems is demonstrated for two palladium(II) metallosupramolecular spheres (822 and 1644 atoms, respectively), it is also shown that this method produces ECD spectra of incorrect sign in the origin-independent dipole velocity formalism for extended π-systems. This behavior is due to the Tamm-Dancoff approximation (TDA) and, therefore, it is also present in TDA-DFT and the related configuration interaction singles (CIS) approach. Based on the insights obtained from this study, the A+B/2 correction is developed, which corrects the (simplified) TDA eigenvectors affording origin-independent dipole velocity ECD spectra of roughly (s)TD-DFT quality, while retaining the lower computational cost of the (s)TDA excited state treatment. Combination with a newly developed, purpose-specific extended tight-binding procedure for the ground state yields the ultra-fast sTDA-xTB approach. Due to different adjustments of the atomic orbital basis and the tight-binding Hamiltonian, the method is on a par with TDA-PBE0/def2-SV(P) for vertical excitation energies. The entire computation of an ECD spectrum ( The last part of this thesis reports on another purpose-specific extended tight-binding scheme, GFN-xTB, which provides molecular geometries, harmonic vibrational frequencies, and non-covalent interaction energies with comparable or better accuracy than existing semiempirical methods. Since parameters are available for all elements with Z ≀ 86, the method offers great potential to sample the conformational space of almost arbitrary molecules with up to a few hundred atoms. In combination with the ultra-fast sTDA-xTB approach, ECD spectra can be computed in an almost "black box" manner, e.g., by computing spectra on MD snapshots. Together with the established thermochemistry protocol mentioned above, the newly developed architecture sets the stage for a fully automatic multi-level ECD procedure to be developed in the near future.Diese Dissertation stellt einen effizienten Ansatz zur Berechnung von elektronischen Anregungsspektren molekularer Systeme vor, wobei der besondere Fokus auf der Berechnung von elektronischen Circulardichroismus-(ECD-)Spektren liegt. Die ECD-Spektroskopie wird typischerweise verwendet, um zwischen den beiden Enantiomeren einer chiralen Verbindung zu unterscheiden. Aufgrund der hohen SensibilitĂ€t fĂŒr die rĂ€umliche Struktur des MolekĂŒls wird zur zuverlĂ€ssigen Simulation von ECD-Spektren die Kenntnis der relevanten Konformere inklusive ihrer Boltzmann-Populationen und der jeweiligen ECD-Signale (d.h. deren energetische Lage und IntensitĂ€ten) benötigt. Die Populationen können mithilfe eines literaturbekannten Thermochemieprotokolls unter Verwendung der dispersionskorrigierten Dichtefunktionaltheorie (DFT-D) nĂ€herungsweise berechnet werden. In der vorliegenden Arbeit wird dieses Modell verwendet, um die Komplexbildung von zwei intermolekularen frustrierten Lewispaaren (FLPs) zu untersuchen. Obwohl diese Fallstudie keine Berechnung eines ECD-Spektrums zum Ziel hat, geben die gewonnenen Erkenntnisse durchaus Aufschluss darĂŒber, ob sich der gewĂ€hlte Ansatz auch dazu eignet, die Populationen verschiedener Konformere zu bestimmen. Der Vergleich mit hochwertigen Vergleichsrechnungen auf der einen und mit zum Teil verfĂŒgbaren experimentellen Daten auf der anderen Seite legt nahe, dass der grĂ¶ĂŸte Unsicherheitsfaktor in den SolvatationsbeitrĂ€gen vorliegt, welche mithilfe eines impliziten Lösungsmittelmodells bestimmt werden. Allerdings liegen deren geschĂ€tzte Fehler fĂŒr unterschiedliche rĂ€umliche Anordnungen des Komplexes, d.h. bei einer gleichbleibenden SystemgrĂ¶ĂŸe von ca. 50-100 Atomen, lediglich bei etwa 1 kcal mol-1. FĂŒr die Berechnung von freien konformellen Enthalpien ist mit Ă€hnlich großen Fehlern zu rechnen. Kombiniert mit Quadruple-ζ-BasissĂ€tzen weisen Hybrid-DFT-Methoden bereits nahezu konvergierte elektronische Energien auf und können bei gleichzeitiger Verwendung einer Dispersionskorrektur relativ genaue GasphasenenergiebeitrĂ€ge (so z.B. PW6B95-D3) zu den freien Enthalpien in Lösung beitragen. Der Großteil dieser Dissertation beschĂ€ftigt sich mit der Entwicklung und Anwendung von kosteneffizienten Methoden zur Berechnung angeregter ZustĂ€nde. Die gegenwĂ€rtig am hĂ€ufigsten verwendete Methode zur Berechnung von ECD-Spektren ist die zeitabhĂ€ngige Dichtefunktionaltheorie (TD-DFT). Von dieser ausgehend wird die vereinfachte TD-DFT Methode (sTD-DFT) entwickelt. Aufgrund der semiempirischen NĂ€herung der Zweielektronenintegrale und der deutlichen Reduzierung der relevanten Matrixdimensionen wird die Berechnung der angeregten ZustĂ€nde um mindestens drei GrĂ¶ĂŸenordnungen beschleunigt. Diese NĂ€herungen sind konsistent zu jenen, die bereits in dem vereinfachten Tamm-Dancoff-genĂ€herten TD-DFT (sTDA-DFT) Ansatz eigefĂŒhrt wurden. Im Vergleich zu den Ausgangsmethoden, also TD-DFT und seiner Tamm-Dancoff-NĂ€herung (TDA-DFT), ist weder eine signifikante BeeintrĂ€chtigung der senkrechten Anregungsenergien noch eine Verschlechterung der Absorptions- und ECD-IntensitĂ€ten bemerkbar. Insbesondere die sTD-DFT Methode eignet sich zur effizienten und zuverlĂ€ssigen Berechnung von ECD-Spektren. Die Effizienz der sTD-DFT Methode ermöglicht unter anderem die Berechnung von Spektren auf Nichtminimumsstrukturen, die aus einer Molekulardynamik-(MD)-Simulation stammen. Somit können vibronische Effekte nĂ€herungsweise erfasst werden, ohne dass ein quantenmechanischer (QM) Ansatz fĂŒr die Kerne verwendet werden muss. Exemplarisch wird dieses Verfahren fĂŒr das [16]Helicen (102 Atome) und einem disubstituierten Derivat (164 Atome) angewandt. Die Anwendbarkeit der sTDA-DFT Methode auf sehr große Systeme wird am Beispiel von zwei Palladium(II)-metallosupramolekularen Komplexen (822 und 1644 Atome) verdeutlicht, doch zeigt eine weitere Studie, dass Tamm-Dancoff-genĂ€herte (TDA) Methoden fĂŒr die ECD Spektren von ausgedehnten, delokalisierten π-Systemen im Impulsformalismus das falsche Vorzeichen liefern. Gleiches gilt fĂŒr den verwandten Konfigurationswechselwirkungs-Ansatz mit Einfachanregungen (CIS). Basierend auf den Erkenntnissen dieser Studie ist es gelungen, die sogenannte A+B/2-NĂ€herung zu entwickeln, welche die entsprechenden Fehler in den TDA Eigenvektoren behebt, ohne die Kosten der Methode sichtlich zu erhöhen. Durch die Kombination des so korrigierten vereinfachten TDA-Ansatzes mit einer speziell optimierten semiempirischen Tight-Binding-Methode fĂŒr den Grundzustand wird die Ă€ußerst schnelle sTDA-xTB-Methode erhalten. Aufgrund verschiedener Modifikationen der Atomorbitalbasis und des Tight-Binding-Potentials erreicht diese Methode eine Ă€hnliche Genauigkeit fĂŒr senkrechte Anregungsenergien wie z.B. eine DFT-basierende Rechnung auf TDA-PBE0/def2-SV(P) Niveau. Die beachtliche Effizienz der Methode wird im Vergleich zum bereits effizienten sTD-BHLYP/def2-SV(P) Ansatz fĂŒr das [16]Helicen (alle Anregungen bis 9 eV) deutlich: WĂ€hrend letzterer Ansatz etwas mehr als eine Stunde Rechenzeit benötigt, ist das ECD-Spektrum mit sTDA-xTB bereits nach 10 s verfĂŒgbar. Da die Parametrisierung nahezu das gesamte Periodensystem abdeckt, werden Standardrechnungen von Spektren großer Systeme (mit ca. 1000 Atomen) ermöglicht, selbst wenn mehrere Konformere berĂŒcksichtigt werden. Im letzten Teil der Arbeit wird eine weitere spezialisierte Tight-Binding-Methode vorgestellt (GFN-xTB), die wiederum auf die Berechnung von Geometrien, harmonischen Frequenzen und nichtkovalenten Wechselwirkungen ausgelegt ist und hierfĂŒr bessere Ergebnisse liefert als vergleichbare semiempirische Methoden. Die VerfĂŒgbarkeit von Parametern fĂŒr alle Elemente mit Z ≀ 86 ermöglicht das Absuchen des konformellen Raums fĂŒr unterschiedliche Systeme mit wenigen hundert Atomen. Zusammen mit sTDA-xTB sind in kĂŒrzester Zeit Berechnungen von Sprektren z.B. entlang von MD-Trajektorien möglich. Vereint mit den bereits existierenden Thermochemieprotokollen sind somit die ersten Voraussetzungen fĂŒr eine völlig automatische Prozedur zur Berechnung von ECD-Spektren geschaffen worden

    Computational strategies for the accurate thermochemistry and kinetics of gas-phase reactions

    Get PDF
    This PhD thesis focuses on the theoretical and computational modeling of gas phase chemical reactions, with a particular emphasis on astrophysical and atmospherical ones. The ability to accurately determine the rate coefficients of key elementary reactions is deeply connected to the accurate determination of geometrical parameters, vibrational frequencies and, even more importantly, electronic energies and zeropoint energy corrections of reactants, transition states, intermediates and products involved in the chemical reaction, together with a suitable choice of the statistical approach for the rate computation (i.e. the proper transition state theory model). The main factor limiting the accuracy of this process is the computational time requested to reach meaningful results (i.e. reaching subchemical accuracy below 1 kJ mol−1), which increases dramatically with the the size of the system under investigation. For small-sized systems, several nonempirical procedures have been developed and presented in the literature. However, for larger systems the well-known model chemistries are far from being parameter-free since they include some empirical parameters and employ geometries which are not fully reliable for transition states and noncovalent complexes possibly ruling the entrance channels. Based on these premises, this dissertation has been focused on the development of new “cheap” composite schemes, entirely based on the frozen core coupled cluster ansatz including single, double, and (perturbative) triple excitation calculations in conjunction with a triple-zeta quality basis set, including the contributions due to the extrapolation to the complete basis set limit and core-valence effects using second-order Mþller- Plesset perturbation theory. For the first time the “cheap” scheme has been extended to explicitly-correlated methods, which have an improved performance with respect to their conventional counterparts. Benchmarks with different sets of state of the art energy barriers, interaction energies and geometrical parameters spanning a wide range of values show that, in the absence of strong multireference contributions, the proposed models outperforms the most well-known model chemistries, reaching a subchemical accuracy without any empirical parameter and with affordable computer times. Besides the composite schemes development efforts, a robust protocol for disclosing the thermochemistry and kinetics of reactions of atmospheric and astrophysical interest, rooted in the so-called ab initio-transition-state-theory-based master equation approach have been thoroughly investigated and validated

    Theoretical high-resolution spectroscopy for reactive molecules in astrochemistry and combustion processes

    Get PDF
    • 

    corecore