288 research outputs found

    SoK: Diving into DAG-based Blockchain Systems

    Full text link
    Blockchain plays an important role in cryptocurrency markets and technology services. However, limitations on high latency and low scalability retard their adoptions and applications in classic designs. Reconstructed blockchain systems have been proposed to avoid the consumption of competitive transactions caused by linear sequenced blocks. These systems, instead, structure transactions/blocks in the form of Directed Acyclic Graph (DAG) and consequently re-build upper layer components including consensus, incentives, \textit{etc.} The promise of DAG-based blockchain systems is to enable fast confirmation (complete transactions within million seconds) and high scalability (attach transactions in parallel) without significantly compromising security. However, this field still lacks systematic work that summarises the DAG technique. To bridge the gap, this Systematization of Knowledge (SoK) provides a comprehensive analysis of DAG-based blockchain systems. Through deconstructing open-sourced systems and reviewing academic researches, we conclude the main components and featured properties of systems, and provide the approach to establish a DAG. With this in hand, we analyze the security and performance of several leading systems, followed by discussions and comparisons with concurrent (scaling blockchain) techniques. We further identify open challenges to highlight the potentiality of DAG-based solutions and indicate their promising directions for future research.Comment: Full versio

    Blockchain based Decentralized Applications: Technology Review and Development Guidelines

    Full text link
    Blockchain or Distributed Ledger Technology is a disruptive technology that provides the infrastructure for developing decentralized applications enabling the implementation of novel business models even in traditionally centralized domains. In the last years it has drawn high interest from the academic community, technology developers and startups thus lots of solutions have been developed to address blockchain technology limitations and the requirements of applications software engineering. In this paper, we provide a comprehensive overview of DLT solutions analyzing the addressed challenges, provided solutions and their usage for developing decentralized applications. Our study reviews over 100 blockchain papers and startup initiatives from which we construct a 3-tier based architecture for decentralized applications and we use it to systematically classify the technology solutions. Protocol and Network Tier solutions address the digital assets registration, transactions, data structure, and privacy and business rules implementation and the creation of peer-to-peer networks, ledger replication, and consensus-based state validation. Scaling Tier solutions address the scalability problems in terms of storage size, transaction throughput, and computational capability. Finally, Federated Tier aggregates integrative solutions across multiple blockchain applications deployments. The paper closes with a discussion on challenges and opportunities for developing decentralized applications by providing a multi-step guideline for decentralizing the design of traditional systems and implementing decentralized applications.Comment: 30 pages, 8 figures, 9 tables, 121 reference

    A developed distributed ledger technology architectural layer framework for decentralized governance implementation in virtual enterprise

    Get PDF
    publishedVersio

    Blockchain-based Digital Twins:Research Trends, Issues, and Future Challenges

    Get PDF
    Industrial processes rely on sensory data for decision-making processes, risk assessment, and performance evaluation. Extracting actionable insights from the collected data calls for an infrastructure that can ensure the dissemination of trustworthy data. For the physical data to be trustworthy, it needs to be cross validated through multiple sensor sources with overlapping fields of view. Cross-validated data can then be stored on the blockchain, to maintain its integrity and trustworthiness. Once trustworthy data is recorded on the blockchain, product lifecycle events can be fed into data-driven systems for process monitoring, diagnostics, and optimized control. In this regard, digital twins (DTs) can be leveraged to draw intelligent conclusions from data by identifying the faults and recommending precautionary measures ahead of critical events. Empowering DTs with blockchain in industrial use cases targets key challenges of disparate data repositories, untrustworthy data dissemination, and the need for predictive maintenance. In this survey, while highlighting the key benefits of using blockchain-based DTs, we present a comprehensive review of the state-of-the-art research results for blockchain-based DTs. Based on the current research trends, we discuss a trustworthy blockchain-based DTs framework. We also highlight the role of artificial intelligence in blockchain-based DTs. Furthermore, we discuss the current and future research and deployment challenges of blockchain-supported DTs that require further investigation.</p

    Consensus Algorithms of Distributed Ledger Technology -- A Comprehensive Analysis

    Full text link
    The most essential component of every Distributed Ledger Technology (DLT) is the Consensus Algorithm (CA), which enables users to reach a consensus in a decentralized and distributed manner. Numerous CA exist, but their viability for particular applications varies, making their trade-offs a crucial factor to consider when implementing DLT in a specific field. This article provided a comprehensive analysis of the various consensus algorithms used in distributed ledger technologies (DLT) and blockchain networks. We cover an extensive array of thirty consensus algorithms. Eleven attributes including hardware requirements, pre-trust level, tolerance level, and more, were used to generate a series of comparison tables evaluating these consensus algorithms. In addition, we discuss DLT classifications, the categories of certain consensus algorithms, and provide examples of authentication-focused and data-storage-focused DLTs. In addition, we analyze the pros and cons of particular consensus algorithms, such as Nominated Proof of Stake (NPoS), Bonded Proof of Stake (BPoS), and Avalanche. In conclusion, we discuss the applicability of these consensus algorithms to various Cyber Physical System (CPS) use cases, including supply chain management, intelligent transportation systems, and smart healthcare.Comment: 50 pages, 20 figure
    corecore