1,343 research outputs found

    An assessment of advanced displays and controls technology applicable to future space transportation systems

    Get PDF
    The topic of advanced display and control technology is addressed along with the major objectives of this technology, the current state of the art, major accomplishments, research programs and facilities, future trends, technology issues, space transportation systems applications and projected technology readiness for those applications. The holes that may exist between the technology needs of the transportation systems versus the research that is currently under way are addressed, and cultural changes that might facilitate the incorporation of these advanced technologies into future space transportation systems are recommended. Some of the objectives are to reduce life cycle costs, improve reliability and fault tolerance, use of standards for the incorporation of advancing technology, and reduction of weight, volume and power. Pilot workload can be reduced and the pilot's situational awareness can be improved, which would result in improved flight safety and operating efficiency. This could be accomplished through the use of integrated, electronic pictorial displays, consolidated controls, artificial intelligence, and human centered automation tools. The Orbiter Glass Cockpit Display is an example examined

    Aeronautical Engineering: A special bibliography with indexes, supplement 54

    Get PDF
    This bibliography lists 316 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1975

    Study to determine potential flight applications and human factors design guidelines for voice recognition and synthesis systems

    Get PDF
    A study was conducted to determine potential commercial aircraft flight deck applications and implementation guidelines for voice recognition and synthesis. At first, a survey of voice recognition and synthesis technology was undertaken to develop a working knowledge base. Then, numerous potential aircraft and simulator flight deck voice applications were identified and each proposed application was rated on a number of criteria in order to achieve an overall payoff rating. The potential voice recognition applications fell into five general categories: programming, interrogation, data entry, switch and mode selection, and continuous/time-critical action control. The ratings of the first three categories showed the most promise of being beneficial to flight deck operations. Possible applications of voice synthesis systems were categorized as automatic or pilot selectable and many were rated as being potentially beneficial. In addition, voice system implementation guidelines and pertinent performance criteria are proposed. Finally, the findings of this study are compared with those made in a recent NASA study of a 1995 transport concept

    Status of NASA/Army rotorcraft research and development piloted flight simulation

    Get PDF
    The status of the major NASA/Army capabilities in piloted rotorcraft flight simulation is reviewed. The requirements for research and development piloted simulation are addressed as well as the capabilities and technologies that are currently available or are being developed by NASA and the Army at Ames. The application of revolutionary advances (in visual scene, electronic cockpits, motion, and modelling of interactive mission environments and/or vehicle systems) to the NASA/Army facilities are also addressed. Particular attention is devoted to the major advances made in integrating these individual capabilities into fully integrated simulation environment that were or are being applied to new rotorcraft mission requirements. The specific simulators discussed are the Vertical Motion Simulator and the Crew Station Research and Development Facility

    Technical Workshop: Advanced Helicopter Cockpit Design

    Get PDF
    Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration

    Flight deck automation: Promises and realities

    Get PDF
    Issues of flight deck automation are multifaceted and complex. The rapid introduction of advanced computer-based technology onto the flight deck of transport category aircraft has had considerable impact both on aircraft operations and on the flight crew. As part of NASA's responsibility to facilitate an active exchange of ideas and information among members of the aviation community, a NASA/FAA/Industry workshop devoted to flight deck automation, organized by the Aerospace Human Factors Research Division of NASA Ames Research Center. Participants were invited from industry and from government organizations responsible for design, certification, operation, and accident investigation of transport category, automated aircraft. The goal of the workshop was to clarify the implications of automation, both positive and negative. Workshop panels and working groups identified issues regarding the design, training, and procedural aspects of flight deck automation, as well as the crew's ability to interact and perform effectively with the new technology. The proceedings include the invited papers and the panel and working group reports, as well as the summary and conclusions of the conference

    INSIDES – A new Virtual Prototyping Platform of Human Machine Interactions Systems for Automotive and Aerospace Applications

    Get PDF
    International audienceHuman Machine Interactions Systems are decisive for the acceptance and the safety of new cockpits in the automotive as well as in the aerospace industries. A new design and simulation platform called INSIDES will be presented where virtual cockpit prototypes are being built based on 3D CAD geometry e.g. from CATIA and integrated with logical interaction data derived from UML specifications. This new development platform enables the continuous validation and check of new interaction concepts by involving usability engineers in the very early stage of the development cycle. Since the simulation work is being done in the context of the entire aircraft cockpit/car interior with all instruments, control commands as well displays devices a better validation of the HMI systems can be achieved

    Tacsel: Shape-Changing Tactile Screen applied for Eyes-Free Interaction in Cockpit

    Get PDF
    International audienceTouch screens have become widely used in recent years. Nowadays they have been integrated on numerous electronic devices for common use since they allow the user to interact with what is displayed on the screen. However, these technologies cannot be used in complex systems in which the visual attention is very limited (cockpit manipulation, driving tasks, etc.). This paper introduces the concept of Tacsel, the smaller dynamic element of a tactile screen. Tacsels allow shape-changing and flexible properties to touch screen devices providing eyes-free interaction. We developed a high-resolution prototype of Tacsel to demonstrate its technical feasibility and its potential within a cockpit context. Three interaction scenarios are described and a workshop with brainstorming and video-prototyping is conducted to evaluate the use of the proposed Tacsel in several cockpit tasks. Results showed that interactive Tacsels have a real potential for future cockpits. Several other possible applications are also described, and several advantages and limitations are discussed
    corecore