106,530 research outputs found

    Representation, evolution and embodiment

    Get PDF
    As part of the ongoing attempt to fully naturalize the concept of human being--and, more specifically, to re-center it around the notion of agency--this essay discusses an approach to defining the content of representations in terms ultimately derived from their central, evolved function of providing guidance for action. This 'guidance theory' of representation is discussed in the context of, and evaluated with respect to, two other biologically inspired theories of representation: Dan Lloyd's dialectical theory of representation and Ruth Millikan's biosemantics

    Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach

    Get PDF
    Cooperation is of utmost importance to society as a whole, but is often challenged by individual self-interests. While game theory has studied this problem extensively, there is little work on interactions within and across groups with different preferences or beliefs. Yet, people from different social or cultural backgrounds often meet and interact. This can yield conflict, since behavior that is considered cooperative by one population might be perceived as non-cooperative from the viewpoint of another. To understand the dynamics and outcome of the competitive interactions within and between groups, we study game-dynamical replicator equations for multiple populations with incompatible interests and different power (be this due to different population sizes, material resources, social capital, or other factors). These equations allow us to address various important questions: For example, can cooperation in the prisoner's dilemma be promoted, when two interacting groups have different preferences? Under what conditions can costly punishment, or other mechanisms, foster the evolution of norms? When does cooperation fail, leading to antagonistic behavior, conflict, or even revolutions? And what incentives are needed to reach peaceful agreements between groups with conflicting interests? Our detailed quantitative analysis reveals a large variety of interesting results, which are relevant for society, law and economics, and have implications for the evolution of language and culture as well

    Genetic, epigenetic and exogenetic information

    Get PDF
    We describe an approach to measuring biological information where β€˜information’ is understood in the sense found in Francis Crick’s foundational contributions to molecular biology. Genes contain information in this sense, but so do epigenetic factors, as many biologists have recognized. The term β€˜epigenetic’ is ambiguous, and we introduce a distinction between epigenetic and exogenetic inheritance to clarify one aspect of this ambiguity. These three heredity systems play complementary roles in supplying information for development. We then consider the evolutionary significance of the three inheritance systems. Whilst the genetic inheritance system was the key innovation in the evolution of heredity, in modern organisms the three systems each play important and complementary roles in heredity and evolution. Our focus in the earlier part of the paper is on β€˜proximate biology’, where information is a substantial causal factor that causes organisms to develop and causes offspring to resemble their parents. But much philosophical work has focused on information in β€˜ultimate biology’. Ultimate information is a way of talking about the evolutionary design of the mechanisms of development and inheritance. We conclude by clarifying the relationship between the two. Ultimate information is not a causal factor that acts in development or heredity, but it can help to explain the evolution of proximate information, which is

    β€œEconomic man” in cross-cultural perspective: Behavioral experiments in 15 small-scale societies

    Get PDF
    Researchers from across the social sciences have found consistent deviations from the predictions of the canonical model of self-interest in hundreds of experiments from around the world. This research, however, cannot determine whether the uniformity results from universal patterns of human behavior or from the limited cultural variation available among the university students used in virtually all prior experimental work. To address this, we undertook a cross-cultural study of behavior in ultimatum, public goods, and dictator games in a range of small-scale societies exhibiting a wide variety of economic and cultural conditions. We found, first, that the canonical model – based on self-interest – fails in all of the societies studied. Second, our data reveal substantially more behavioral variability across social groups than has been found in previous research. Third, group-level differences in economic organization and the structure of social interactions explain a substantial portion of the behavioral variation across societies: the higher the degree of market integration and the higher the payoffs to cooperation in everyday life, the greater the level of prosociality expressed in experimental games. Fourth, the available individual-level economic and demographic variables do not consistently explain game behavior, either within or across groups. Fifth, in many cases experimental play appears to reflect the common interactional patterns of everyday life

    Beyond foraging: behavioral science and the future of institutional economics

    Get PDF
    Institutions affect economic outcomes, but variation in them cannot be directly linked to environmental factors such as geography, climate, or technological availabilities. Game theoretic approaches, based as they typically are on foraging only assumptions, do not provide an adequate foundation for understanding the intervening role of politics and ideology; nor does the view that culture and institutions are entirely socially constructed. Understanding what institutions are and how they influence behavior requires an approach that is in part biological, focusing on cognitive and behavioral adaptations for social interaction favored in the past by group selection. These adaptations, along with their effects on canalizing social learning, help to explain uniformities in political and social order, and are the bedrock upon which we build cultural and institutional variability

    Pathways to social evolution: reciprocity, relatedness, and synergy

    Get PDF
    Many organisms live in populations structured by space and by class, exhibit plastic responses to their social partners, and are subject to non-additive ecological and fitness effects. Social evolution theory has long recognized that all of these factors can lead to different selection pressures but has only recently attempted to synthesize how these factors interact. Using models for both discrete and continuous phenotypes, we show that analyzing these factors in a consistent framework reveals that they interact with one another in ways previously overlooked. Specifically, behavioral responses (reciprocity), genetic relatedness, and synergy interact in non-trivial ways that cannot be easily captured by simple summary indices of assortment. We demonstrate the importance of these interactions by showing how they have been neglected in previous synthetic models of social behavior both within and between species. These interactions also affect the level of behavioral responses that can evolve in the long run; proximate biological mechanisms are evolutionarily stable when they generate enough responsiveness relative to the level of responsiveness that exactly balances the ecological costs and benefits. Given the richness of social behavior across taxa, these interactions should be a boon for empirical research as they are likely crucial for describing the complex relationship linking ecology, demography, and social behavior.Comment: 4 figure
    • …
    corecore