122 research outputs found

    On-Line Dependability Enhancement of Multiprocessor SoCs by Resource Management

    Get PDF
    This paper describes a new approach towards dependable design of homogeneous multi-processor SoCs in an example satellite-navigation application. First, the NoC dependability is functionally verified via embedded software. Then the Xentium processor tiles are periodically verified via on-line self-testing techniques, by using a new IIP Dependability Manager. Based on the Dependability Manager results, faulty tiles are electronically excluded and replaced by fault-free spare tiles via on-line resource management. This integrated approach enables fast electronic fault detection/diagnosis and repair, and hence a high system availability. The dependability application runs in parallel with the actual application, resulting in a very dependable system. All parts have been verified by simulation

    Models of Architecture

    Get PDF
    The current trend in high performance and embedded computing consists of designing increasingly complex heterogeneous hardware architectures with non-uniform communication resources. In order to take hardware and software design decisions, early evaluations of the system non-functional properties are needed. These evaluations of system efficiency require high-level information on both the algorithms and the architecture. In state of the art Model Driven Engineering (MDE) methods, different communities have developed custom architecture models associated to languages of substantial complexity. This fact contrasts with Models of Computation (MoCs) that provide abstract representations of an algorithm behavior as well as tool interoperability.In this report, we define the notion of Model of Architecture (MoA) and study the combination of a MoC and an MoA to provide a design space exploration environment for the study of the algorithmic and architectural choices. An MoA provides reproducible cost computation for evaluating the efficiency of a system. A new MoA called Linear System-Level Architecture Model (LSLA) is introduced and compared to state of the art models. LSLA aims at representing hardware efficiency with a linear model. The computed cost results from the mapping of an application, represented by a model conforming a MoC on an architecture represented by a model conforming an MoA. The cost is composed of a processing-related part and a communication-related part. It is an abstract scalar value to be minimized and can represent any non-functional requirement of a system such as memory, energy, throughput or latency

    Low power architectures for streaming applications

    Get PDF

    Models of Architecture: Reproducible Efficiency Evaluation for Signal Processing Systems

    Get PDF
    International audienceThe current trend in high performance and embedded signal processing consists of designing increasingly complex heterogeneous hardware architectures with non-uniform communication resources. In order to take hardware and software design decisions, early evaluations of the system non-functional properties are needed. These evaluations of system efficiency require high-level information on both the algorithms and the architecture. In this paper, we define the notion of Model of Architecture (MoA) and study the combination of a Model of Computation (MoC) and an MoA to provide a design space exploration environment for the study of the algorithmic and architectural choices. A cost is computed from the mapping of an application, represented by a model conforming a MoC onto an architecture represented by a model conforming an MoA. The cost is composed of a processing-related part and a communication-related part. It is an abstract scalar value to be minimized and can represent any non-functional requirement of a system such as memory, energy, throughput or latency

    Towards Efficient Resource Allocation for Embedded Systems

    Get PDF
    Das Hauptthema ist die dynamische Ressourcenverwaltung in eingebetteten Systemen, insbesondere die Verwaltung von Rechenzeit und Netzwerkverkehr auf einem MPSoC. Die Idee besteht darin, eine Pipeline fĂŒr die Verarbeitung von Mobiler Kommunikation auf dem Chip dynamisch zu schedulen, um die Effizienz der Hardwareressourcen zu verbessern, ohne den Ressourcenverbrauch des dynamischen Schedulings dramatisch zu erhöhen. Sowohl Software- als auch Hardwaremodule werden auf Hotspots im Ressourcenverbrauch untersucht und optimiert, um diese zu entfernen. Da Applikationen im Bereich der Signalverarbeitung normalerweise mit Hilfe von SDF-Diagrammen beschrieben werden können, wird deren dynamisches Scheduling optimiert, um den Ressourcenverbrauch gegenĂŒber dem ĂŒblicherweise verwendeten statischen Scheduling zu verbessern. Es wird ein hybrider dynamischer Scheduler vorgestellt, der die Vorteile von Processing-Networks und der Planung von Task-Graphen kombiniert. Es ermöglicht dem Scheduler, ein Gleichgewicht zwischen der Parallelisierung der Berechnung und der Zunahme des dynamischen Scheduling-Aufands optimal abzuwĂ€gen. Der resultierende dynamisch erstellte Schedule reduziert den Ressourcenverbrauch um etwa 50%, wobei die Laufzeit im Vergleich zu einem statischen Schedule nur um 20% erhöht wird. ZusĂ€tzlich wird ein verteilter dynamischer SDF-Scheduler vorgeschlagen, der das Scheduling in verschiedene Teile zerlegt, die dann zu einer Pipeline verbunden werden, um mehrere parallele Prozessoren einzubeziehen. Jeder Scheduling-Teil wird zu einem Cluster mit Load-Balancing erweitert, um die Anzahl der parallel laufenden Scheduling-Jobs weiter zu erhöhen. Auf diese Weise wird dem vorhandene Engpass bei dem dynamischen Scheduling eines zentralisierten Schedulers entgegengewirkt, sodass 7x mehr Prozessoren mit dem Pipelined-Clustered-Dynamic-Scheduler fĂŒr eine typische Signalverarbeitungsanwendung verwendet werden können. Das neue dynamische Scheduling-System setzt das Vorhandensein von drei verschiedenen Kommunikationsmodi zwischen den Verarbeitungskernen voraus. Bei der Emulation auf Basis des hĂ€ufig verwendeten RDMA-Protokolls treten Leistungsprobleme auf. Sehr gut kann RDMA fĂŒr einmalige Punkt-zu-Punkt-DatenĂŒbertragungen verwendet werden, wie sie bei der AusfĂŒhrung von Task-Graphen verwendet werden. Process-Networks verwenden normalerweise Datenströme mit hohem Volumen und hoher Bandbreite. Es wird eine FIFO-basierte Kommunikationslösung vorgestellt, die einen zyklischen Puffer sowohl im Sender als auch im EmpfĂ€nger implementiert, um diesen Bedarf zu decken. Die Pufferbehandlung und die DatenĂŒbertragung zwischen ihnen erfolgen ausschließlich in Hardware, um den Software-Overhead aus der Anwendung zu entfernen. Die Implementierung verbessert die Zugriffsverwaltung mehrerer Nutzer auf flĂ€chen-effiziente Single-Port Speichermodule. Es werden 0,8 der theoretisch möglichen Bandbreite, die normalerweise nur mit flĂ€chenmĂ€ĂŸig teureren Dual-Port-Speichern erreicht wird. Der dritte Kommunikationsmodus definiert eine einfache Message-Passing-Implementierung, die ohne einen Verbindungszustand auskommt. Dieser Modus wird fĂŒr eine effiziente prozessĂŒbergreifende Kommunikation des verteilten Scheduling-Systems und der engen Ansteuerung der restlichen Prozessoren benötigt. Eine Flusskontrolle in Hardware stellt sicher, dass eine große Anzahl von Sendern Nachrichten an denselben EmpfĂ€nger senden kann. Dabei wird garantiert, dass alle Nachrichten korrekt empfangen werden, ohne dass eine Verbindung hergestellt werden muss und die Nachrichtenlaufzeit gering bleibt. Die Arbeit konzentriert sich auf die Optimierung des Codesigns von Hardware und Software, um die kompromisslose Ressourceneffizienz der dynamischen SDF-Graphen-Planung zu erhöhen. Besonderes Augenmerk wird auf die AbhĂ€ngigkeiten zwischen den Ebenen eines verteilten Scheduling-Systems gelegt, das auf der VerfĂŒgbarkeit spezifischer hardwarebeschleunigter Kommunikationsmethoden beruht.:1 Introduction 1.1 Motivation 1.2 The Multiprocessor System on Chip Architecture 1.3 Concrete MPSoC Architecture 1.4 Representing LTE/5G baseband processing as Static Data Flow 1.5 Compuation Stack 1.6 Performance Hotspots Addressed 1.7 State of the Art 1.8 Overview of the Work 2 Hybrid SDF Execution 2.1 Addressed Performance Hotspot 2.2 State of the Art 2.3 Static Data Flow Graphs 2.4 Runtime Environment 2.5 Overhead of Deloying Tasks to a MPSoC 2.6 Interpretation of SDF Graphs as Task Graphs 2.7 Interpreting SDF Graphs as Process Networks 2.8 Hybrid Interpretation 2.9 Graph Topology Considerations 2.10 Theoretic Impact of Hybrid Interpretation 2.11 Simulating Hybrid Execution 2.12 Pipeline SDF Graph Example 2.13 Random SDF Graphs 2.14 LTE-like SDF Graph 2.15 Key Lernings 3 Distribution of Management 3.1 Addressed Performance Hotspot 3.2 State of the Art 3.3 Revising Deployment Overhead 3.4 Distribution of Overhead 3.5 Impact of Management Distribution to Resource Utilization 3.6 Reconfigurability 3.7 Key Lernings 4 Sliced FIFO Hardware 4.1 Addressed Performance Hotspot 4.2 State of the Art 4.3 System Environment 4.4 Sliced Windowed FIFO buffer 4.5 Single FIFO Evaluation 4.6 Multiple FIFO Evalutaion 4.7 Hardware Implementation 4.8 Key Lernings 5 Message Passing Hardware 5.1 Addressed Performance Hotspot 5.2 State of the Art 5.3 Message Passing Regarded as Queueing 5.4 A Remote Direct Memory Access Based Implementation 5.5 Hardware Implementation Concept 5.6 Evalutation of Performance 5.7 Key Lernings 6 SummaryThe main topic is the dynamic resource allocation in embedded systems, especially the allocation of computing time and network traïŹƒc on an multi processor system on chip (MPSoC). The idea is to dynamically schedule a mobile communication signal processing pipeline on the chip to improve hardware resource eïŹƒciency while not dramatically improve resource consumption because of dynamic scheduling overhead. Both software and hardware modules are examined for resource consumption hotspots and optimized to remove them. Since signal processing can usually be described with the help of static data ïŹ‚ow (SDF) graphs, the dynamic handling of those is optimized to improve resource consumption over the commonly used static scheduling approach. A hybrid dynamic scheduler is presented that combines beneïŹts from both processing networks and task graph scheduling. It allows the scheduler to optimally balance parallelization of computation and addition of dynamic scheduling overhead. The resulting dynamically created schedule reduces resource consumption by about 50%, with a runtime increase of only 20% compared to a static schedule. Additionally, a distributed dynamic SDF scheduler is proposed that splits the scheduling into different parts, which are then connected to a scheduling pipeli ne to incorporate multiple parallel working processors. Each scheduling stage is reworked into a load-balanced cluster to increase the number of parallel scheduling jobs further. This way, the still existing dynamic scheduling bottleneck of a centralized scheduler is widened, allowing handling 7x more processors with the pipelined, clustered dynamic scheduler for a typical signal processing application. The presented dynamic scheduling system assumes the presence of three different communication modes between the processing cores. When emulated on top of the commonly used remote direct memory access (RDMA) protocol, performance issues are encountered. Firstly, RDMA can neatly be used for single-shot point-to-point data transfers, like used in task graph scheduling. Process networks usually make use of high-volume and high-bandwidth data streams. A ïŹrst in ïŹrst out (FIFO) communication solution is presented that implements a cyclic buffer on both sender and receiver to serve this need. The buffer handling and data transfer between them are done purely in hardware to remove software overhead from the application. The implementation improves the multi-user access to area-eïŹƒcient single port on-chip memory modules. It achieves 0.8 of the theoretically possible bandwidth, usually only achieved with area expensive dual-port memories. The third communication mode deïŹnes a lightweight message passing (MP) implementation that is truly connectionless. It is needed for eïŹƒcient inter-process communication of the distributed and clustered scheduling system and the worker processing units’ tight coupling. A hardware ïŹ‚ow control assures that an arbitrary number of senders can spontaneously start sending messages to the same receiver. Yet, all messages are guaranteed to be correctly received while eliminating the need for connection establishment and keeping a low message delay. The work focuses on the hardware-software codesign optimization to increase the uncompromised resource eïŹƒciency of dynamic SDF graph scheduling. Special attention is paid to the inter-level dependencies in developing a distributed scheduling system, which relies on the availability of speciïŹc hardwareaccelerated communication methods.:1 Introduction 1.1 Motivation 1.2 The Multiprocessor System on Chip Architecture 1.3 Concrete MPSoC Architecture 1.4 Representing LTE/5G baseband processing as Static Data Flow 1.5 Compuation Stack 1.6 Performance Hotspots Addressed 1.7 State of the Art 1.8 Overview of the Work 2 Hybrid SDF Execution 2.1 Addressed Performance Hotspot 2.2 State of the Art 2.3 Static Data Flow Graphs 2.4 Runtime Environment 2.5 Overhead of Deloying Tasks to a MPSoC 2.6 Interpretation of SDF Graphs as Task Graphs 2.7 Interpreting SDF Graphs as Process Networks 2.8 Hybrid Interpretation 2.9 Graph Topology Considerations 2.10 Theoretic Impact of Hybrid Interpretation 2.11 Simulating Hybrid Execution 2.12 Pipeline SDF Graph Example 2.13 Random SDF Graphs 2.14 LTE-like SDF Graph 2.15 Key Lernings 3 Distribution of Management 3.1 Addressed Performance Hotspot 3.2 State of the Art 3.3 Revising Deployment Overhead 3.4 Distribution of Overhead 3.5 Impact of Management Distribution to Resource Utilization 3.6 Reconfigurability 3.7 Key Lernings 4 Sliced FIFO Hardware 4.1 Addressed Performance Hotspot 4.2 State of the Art 4.3 System Environment 4.4 Sliced Windowed FIFO buffer 4.5 Single FIFO Evaluation 4.6 Multiple FIFO Evalutaion 4.7 Hardware Implementation 4.8 Key Lernings 5 Message Passing Hardware 5.1 Addressed Performance Hotspot 5.2 State of the Art 5.3 Message Passing Regarded as Queueing 5.4 A Remote Direct Memory Access Based Implementation 5.5 Hardware Implementation Concept 5.6 Evalutation of Performance 5.7 Key Lernings 6 Summar

    Models of Architecture: Reproducible Efficiency Evaluation for Signal Processing Systems

    Get PDF
    International audienceThe current trend in high performance and embedded signal processing consists of designing increasingly complex heterogeneous hardware architectures with non-uniform communication resources. In order to take hardware and software design decisions, early evaluations of the system non-functional properties are needed. These evaluations of system efficiency require high-level information on both the algorithms and the architecture. In this paper, we define the notion of Model of Architecture (MoA) and study the combination of a Model of Computation (MoC) and an MoA to provide a design space exploration environment for the study of the algorithmic and architectural choices. A cost is computed from the mapping of an application, represented by a model conforming a MoC onto an architecture represented by a model conforming an MoA. The cost is composed of a processing-related part and a communication-related part. It is an abstract scalar value to be minimized and can represent any non-functional requirement of a system such as memory, energy, throughput or latency

    Throughput and Memory Optimization for Parallel Implementations of Dataflow Networks Using Multi-Reader Buffers

    Get PDF
    In this paper, we introduce the concept of Multi-Reader Buffers (MRBs) for high throughput and memory-efficient implementation of dataflow applications. Our work is motivated by the huge amount of data that needs to be processed and typically accessed in a FIFO manner, particularly in image and video processing applications. Here, multi-cast, fork, and merge operator implementations known today produce huge memory overheads by storing and communicating copies of the same data. As a remedy, we first introduce MRBs as buffers preserving FIFO semantics for a finite number of readers of the same data while storing each data item only once. Second, we present an approach for memory minimization of data flow networks by replacing all multi-cast actors and connected FIFOs with MRBs. Third, we present a Design Space Exploration approach to selectively replace multi-cast actors with MRBs in order to explore memory, throughput, and processor resource allocation tradeoffs. Our results show that the explored Pareto fronts of our approach improve the solution quality over a reference by 78% in average for six benchmark applications in terms of a hypervolume indicator

    Improving Model-Based Software Synthesis: A Focus on Mathematical Structures

    Get PDF
    Computer hardware keeps increasing in complexity. Software design needs to keep up with this. The right models and abstractions empower developers to leverage the novelties of modern hardware. This thesis deals primarily with Models of Computation, as a basis for software design, in a family of methods called software synthesis. We focus on Kahn Process Networks and dataïŹ‚ow applications as abstractions, both for programming and for deriving an eïŹƒcient execution on heterogeneous multicores. The latter we accomplish by exploring the design space of possible mappings of computation and data to hardware resources. Mapping algorithms are not at the center of this thesis, however. Instead, we examine the mathematical structure of the mapping space, leveraging its inherent symmetries or geometric properties to improve mapping methods in general. This thesis thoroughly explores the process of model-based design, aiming to go beyond the more established software synthesis on dataïŹ‚ow applications. We starting with the problem of assessing these methods through benchmarking, and go on to formally examine the general goals of benchmarks. In this context, we also consider the role modern machine learning methods play in benchmarking. We explore different established semantics, stretching the limits of Kahn Process Networks. We also discuss novel models, like Reactors, which are designed to be a deterministic, adaptive model with time as a ïŹrst-class citizen. By investigating abstractions and transformations in the Ohua language for implicit dataïŹ‚ow programming, we also focus on programmability. The focus of the thesis is in the models and methods, but we evaluate them in diverse use-cases, generally centered around Cyber-Physical Systems. These include the 5G telecommunication standard, automotive and signal processing domains. We even go beyond embedded systems and discuss use-cases in GPU programming and microservice-based architectures
    • 

    corecore