186,292 research outputs found

    Semantics of trace relations in requirements models for consistency checking and inferencing

    Get PDF
    Requirements traceability is the ability to relate requirements back to stakeholders and forward to corresponding design artifacts, code, and test cases. Although considerable research has been devoted to relating requirements in both forward and backward directions, less attention has been paid to relating requirements with other requirements. Relations between requirements influence a number of activities during software development such as consistency checking and change management. In most approaches and tools, there is a lack of precise definition of requirements relations. In this respect, deficient results may be produced. In this paper, we aim at formal definitions of the relation types in order to enable reasoning about requirements relations. We give a requirements metamodel with commonly used relation types. The semantics of the relations is provided with a formalization in first-order logic. We use the formalization for consistency checking of relations and for inferring new relations. A tool has been built to support both reasoning activities. We illustrate our approach in an example which shows that the formal semantics of relation types enables new relations to be inferred and contradicting relations in requirements documents to be determined. The application of requirements reasoning based on formal semantics resolves many of the deficiencies observed in other approaches. Our tool supports better understanding of dependencies between requirements

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    Is my configuration any good: checking usability in an interactive sensor-based activity monitor

    Get PDF
    We investigate formal analysis of two aspects of usability in a deployed interactive, configurable and context-aware system: an event-driven, sensor-based homecare activity monitor system. The system was not designed from formal requirements or specification: we model the system as it is in the context of an agile development process. Our aim was to determine if formal modelling and analysis can contribute to improving usability, and if so, which style of modelling is most suitable. The purpose of the analysis is to inform configurers about how to interact with the system, so the system is more usable for participants, and to guide future developments. We consider redundancies in configuration rules defined by carers and participants and the interaction modality of the output messages.Two approaches to modelling are considered: a deep embedding in which devices, sensors and rules are represented explicitly by data structures in the modelling language and non-determinism is employed to model all possible device and sensor states, and a shallow embedding in which the rules and device and sensor states are represented directly in propositional logic. The former requires a conventional machine and a model-checker for analysis, whereas the latter is implemented using a SAT solver directly on the activity monitor hardware. We draw conclusions about the role of formal models and reasoning in deployed systems and the need for clear semantics and ontologies for interaction modalities
    corecore