51 research outputs found

    From Events to Reactions: A Progress Report

    Full text link
    Syndicate is a new coordinated, concurrent programming language. It occupies a novel point on the spectrum between the shared-everything paradigm of threads and the shared-nothing approach of actors. Syndicate actors exchange messages and share common knowledge via a carefully controlled database that clearly scopes conversations. This approach clearly simplifies coordination of concurrent activities. Experience in programming with Syndicate, however, suggests a need to raise the level of linguistic abstraction. In addition to writing event handlers and managing event subscriptions directly, the language will have to support a reactive style of programming. This paper presents event-oriented Syndicate programming and then describes a preliminary design for augmenting it with new reactive programming constructs.Comment: In Proceedings PLACES 2016, arXiv:1606.0540

    Supporting Collaborative Communication in a Multi-layer Meta-process Model for Evolutionary Shared Workflows

    Get PDF
    A key planning activity within a Virtual Enterprise (VE) is to establish agreed inter-organizational processes. This activity, or meta-process, has to allow for gradual evolution of the VE processes and for a multi layer development from informal business agreements to precise workflows. To support this meta-process, a collaborative electronic whiteboard supported by a tuplespace is proposed. The whiteboard supports a mixed graphical and text interface, with support for keeping track of the changes made. The participating organizations upload workflow definitions from their own IT systems into the tuplespace. Workflows are then discussed, modified and evolved before being downloaded again and mapped to the partners’ individual systems

    Time-fluid field-based coordination

    Get PDF
    Emerging application scenarios, such as cyber-physical systems (CPSs), the Internet of Things (IoT), and edge computing, call for coordination approaches addressing openness, self-adaptation, heterogeneity, and deployment agnosticism. Field-based coordination is one such approach, promoting the idea of programming system coordination declaratively from a global perspective, in terms of functional manipulation and evolution in \u201cspace and time\u201d of distributed data structures, called fields. More specifically, regarding time, in field-based coordination it is assumed that local activities in each device, called computational rounds, are regulated by a fixed clock, typically, a fair and unsynchronized distributed scheduler. In this work, we challenge this assumption, and propose an alternative approach where the round execution scheduling is naturally programmed along with the usual coordination specification, namely, in terms of a field of causal relations dictating what is the notion of causality (why and when a round has to be locally scheduled) and how it should change across time and space. This abstraction over the traditional view on global time allows us to express what we call \u201ctime-fluid\u201d coordination, where causality can be finely tuned to select the event triggers to react to, up to to achieve improved balance between performance (system reactivity) and cost (usage of computational resources). We propose an implementation in the aggregate computing framework, and evaluate via simulation on a case study

    Time-fluid field-based coordination

    Get PDF
    Emerging application scenarios, such as cyber-physical systems (CPSs), the Internet of Things (IoT), and edge computing, call for coordination approaches addressing openness, self-adaptation, heterogeneity, and deployment agnosticism. Field-based coordination is one such approach, promoting the idea of programming system coordination declaratively from a global perspective, in terms of functional manipulation and evolution in “space and time” of distributed data structures, called fields. More specifically, regarding time, in field-based coordination it is assumed that local activities in each device, called computational rounds, are regulated by a fixed clock, typically, a fair and unsynchronized distributed scheduler. In this work, we challenge this assumption, and propose an alternative approach where the round execution scheduling is naturally programmed along with the usual coordination specification, namely, in terms of a field of causal relations dictating what is the notion of causality (why and when a round has to be locally scheduled) and how it should change across time and space. This abstraction over the traditional view on global time allows us to express what we call “time-fluid” coordination, where causality can be finely tuned to select the event triggers to react to, up to to achieve improved balance between performance (system reactivity) and cost (usage of computational resources). We propose an implementation in the aggregate computing framework, and evaluate via simulation on a case study

    Hybrid clouds for data-Intensive, 5G-Enabled IoT applications: an overview, key issues and relevant architecture

    Get PDF
    Hybrid cloud multi-access edge computing (MEC) deployments have been proposed as efficient means to support Internet of Things (IoT) applications, relying on a plethora of nodes and data. In this paper, an overview on the area of hybrid clouds considering relevant research areas is given, providing technologies and mechanisms for the formation of such MEC deployments, as well as emphasizing several key issues that should be tackled by novel approaches, especially under the 5G paradigm. Furthermore, a decentralized hybrid cloud MEC architecture, resulting in a Platform-as-a-Service (PaaS) is proposed and its main building blocks and layers are thoroughly described. Aiming to offer a broad perspective on the business potential of such a platform, the stakeholder ecosystem is also analyzed. Finally, two use cases in the context of smart cities and mobile health are presented, aimed at showing how the proposed PaaS enables the development of respective IoT applications.Peer ReviewedPostprint (published version

    Middleware for large scale in situ analytics workflows

    Get PDF
    The trend to exascale is causing researchers to rethink the entire computa- tional science stack, as future generation machines will contain both diverse hardware environments and run times that manage them. Additionally, the science applications themselves are stepping away from the traditional bulk-synchronous model and are moving towards a more dynamic and decoupled environment where analysis routines are run in situ alongside the large scale simulations. This thesis presents CoApps, a middleware that allows in situ science analytics applications to operate in a location-flexible manner. Additionally, CoApps explores methods to extract information from, and issue management operations to, lower level run times that are managing the diverse hardware expected to be found on next generation exascale machines. This work leverages experience with several extremely scalable applications in materials and fusion, and has been evaluated on machines ranging from local Linux clusters to the supercomputer Titan.Ph.D

    LIME: A Coordination Middleware Supporting Mobility of Agents and Hosts

    Get PDF
    LIME (Linda in a Mobile Environment) is a middleware supporting the development of applications that exhibit physical mobility of hosts, logical mobility of agents, or both. LIME adopts a coordination perspective inspired by work on the Linda model. The context for computation, represented in Linda by a globally accessible, persistent tuple space, is refined in LIME to transient sharing of identically-named tuple spaces carried by individual mobile units. Tuple spaces are also extended with a notion of location and programs are given the ability to react to specified states. The resulting model provides a minimalist set of abstractions that promise to facilitate rapid and dependable development of mobile applications. In this paper, we illustrate the model underlying LIME, provide a formal semantic characterization for the operations it makes available to the application developer, present its current design and implementation, and discuss lessons learned in developing applications that involve physical mobility

    Data Spaces

    Get PDF
    This open access book aims to educate data space designers to understand what is required to create a successful data space. It explores cutting-edge theory, technologies, methodologies, and best practices for data spaces for both industrial and personal data and provides the reader with a basis for understanding the design, deployment, and future directions of data spaces. The book captures the early lessons and experience in creating data spaces. It arranges these contributions into three parts covering design, deployment, and future directions respectively. The first part explores the design space of data spaces. The single chapters detail the organisational design for data spaces, data platforms, data governance federated learning, personal data sharing, data marketplaces, and hybrid artificial intelligence for data spaces. The second part describes the use of data spaces within real-world deployments. Its chapters are co-authored with industry experts and include case studies of data spaces in sectors including industry 4.0, food safety, FinTech, health care, and energy. The third and final part details future directions for data spaces, including challenges and opportunities for common European data spaces and privacy-preserving techniques for trustworthy data sharing. The book is of interest to two primary audiences: first, researchers interested in data management and data sharing, and second, practitioners and industry experts engaged in data-driven systems where the sharing and exchange of data within an ecosystem are critical

    Data Spaces

    Get PDF
    This open access book aims to educate data space designers to understand what is required to create a successful data space. It explores cutting-edge theory, technologies, methodologies, and best practices for data spaces for both industrial and personal data and provides the reader with a basis for understanding the design, deployment, and future directions of data spaces. The book captures the early lessons and experience in creating data spaces. It arranges these contributions into three parts covering design, deployment, and future directions respectively. The first part explores the design space of data spaces. The single chapters detail the organisational design for data spaces, data platforms, data governance federated learning, personal data sharing, data marketplaces, and hybrid artificial intelligence for data spaces. The second part describes the use of data spaces within real-world deployments. Its chapters are co-authored with industry experts and include case studies of data spaces in sectors including industry 4.0, food safety, FinTech, health care, and energy. The third and final part details future directions for data spaces, including challenges and opportunities for common European data spaces and privacy-preserving techniques for trustworthy data sharing. The book is of interest to two primary audiences: first, researchers interested in data management and data sharing, and second, practitioners and industry experts engaged in data-driven systems where the sharing and exchange of data within an ecosystem are critical

    13th international workshop on expressiveness in concurrency

    Get PDF
    corecore