651 research outputs found

    A critical review of online battery remaining useful lifetime prediction methods.

    Get PDF
    Lithium-ion batteries play an important role in our daily lives. The prediction of the remaining service life of lithium-ion batteries has become an important issue. This article reviews the methods for predicting the remaining service life of lithium-ion batteries from three aspects: machine learning, adaptive filtering, and random processes. The purpose of this study is to review, classify and compare different methods proposed in the literature to predict the remaining service life of lithium-ion batteries. This article first summarizes and classifies various methods for predicting the remaining service life of lithium-ion batteries that have been proposed in recent years. On this basis, by selecting specific criteria to evaluate and compare the accuracy of different models, find the most suitable method. Finally, summarize the development of various methods. According to the research in this article, the average accuracy of machine learning is 32.02% higher than the average of the other two methods, and the prediction cycle is 9.87% shorter than the average of the other two methods

    Prognostics and health management for maintenance practitioners - Review, implementation and tools evaluation.

    Get PDF
    In literature, prognostics and health management (PHM) systems have been studied by many researchers from many different engineering fields to increase system reliability, availability, safety and to reduce the maintenance cost of engineering assets. Many works conducted in PHM research concentrate on designing robust and accurate models to assess the health state of components for particular applications to support decision making. Models which involve mathematical interpretations, assumptions and approximations make PHM hard to understand and implement in real world applications, especially by maintenance practitioners in industry. Prior knowledge to implement PHM in complex systems is crucial to building highly reliable systems. To fill this gap and motivate industry practitioners, this paper attempts to provide a comprehensive review on PHM domain and discusses important issues on uncertainty quantification, implementation aspects next to prognostics feature and tool evaluation. In this paper, PHM implementation steps consists of; (1) critical component analysis, (2) appropriate sensor selection for condition monitoring (CM), (3) prognostics feature evaluation under data analysis and (4) prognostics methodology and tool evaluation matrices derived from PHM literature. Besides PHM implementation aspects, this paper also reviews previous and on-going research in high-speed train bogies to highlight problems faced in train industry and emphasize the significance of PHM for further investigations

    Remaining Useful Life Prediction for Lithium-ion Batteries Based on Capacity Estimation and Box-Cox Transformation

    Get PDF
    IEEE Remaining useful life (RUL) prediction of lithium-ion batteries plays an important role in intelligent battery management systems (BMSs). The current RUL prediction methods are mainly developed based on offline training, which are limited by sufficiency and reliability of available data. To address this problem, this paper presents a method for RUL prediction based on the capacity estimation and the Box-Cox transformation (BCT). Firstly, the effective aging features (AFs) are extracted from electrical and thermal characteristics of lithium-ion batteries and the variation in terms of the cyclic discharging voltage profiles. The random forest regression (RFR) is then employed to achieve dependable capacity estimation based on only one cells degradation data for model training. Secondly, the BCT is exploited to transform the estimated capacity data and to construct a linear model between the transformed capacities and cycles. Next, the ridge regression algorithm (RRA) is adopted to identify the parameters of the linear model. Finally, the identified linear model based on the BCT is employed to predict the battery RUL, and the prediction uncertainties are investigated and the probability density function (PDF) is calculated through the Monte Carlo (MC) simulation. The experimental results demonstrate that the proposed method can not only estimate capacity with errors of less than 2%, but also accurately predict the battery RUL with the maximum error of 127 cycles and the maximum spans of 95% confidence of 37 cycles in the whole cycle life

    Data-driven battery aging diagnostics and prognostics

    Get PDF
    Lithium-ion (Li-ion) batteries play a pivotal role in transforming the transportation sector from heavily relying on fossil fuels to a low-carbon solution. But, as an electrochemical device, a battery will inevitably undergo irreversible degradation over time. Therefore, accurate and reliable aging diagnostics and prognostics become indispensable for safe and efficient battery usage during operation. However, diverse aging mechanisms, stochastic usage patterns, and cell-to-cell variations impose significant challenges. With the ever-increasing awareness of the importance of vehicle operating data, more and more automotive companies have started to collect field data. Meanwhile, the rapid advancement in computational power has drawn tremendous attention to using machine learning algorithms to solve complex and challenging tasks. In this thesis, recent data-driven modeling techniques, using both field data collected during vehicle operation and laboratory cycling data, are applied to improve the overall performance of battery aging diagnostics and prognostics. A series of data-driven methods are proposed ranging from battery state of health estimation, future aging trajectory prediction, and remaining useful life prediction. The algorithms are extensively evaluated with various data sources of different battery kinds. The evaluation results indicate that the developed methods are accurate and robust, but more importantly, they are applicable to the harsh conditions encountered in real-world vehicle operations

    Robust State of Health Estimation for Lithium-Ion Batteries Using Machines Learning

    Get PDF

    Fault Diagnosis and Failure Prognostics of Lithium-ion Battery based on Least Squares Support Vector Machine and Memory Particle Filter Framework

    Get PDF
    123456A novel data driven approach is developed for fault diagnosis and remaining useful life (RUL) prognostics for lithium-ion batteries using Least Square Support Vector Machine (LS-SVM) and Memory-Particle Filter (M-PF). Unlike traditional data-driven models for capacity fault diagnosis and failure prognosis, which require multidimensional physical characteristics, the proposed algorithm uses only two variables: Energy Efficiency (EE), and Work Temperature. The aim of this novel framework is to improve the accuracy of incipient and abrupt faults diagnosis and failure prognosis. First, the LSSVM is used to generate residual signal based on capacity fade trends of the Li-ion batteries. Second, adaptive threshold model is developed based on several factors including input, output model error, disturbance, and drift parameter. The adaptive threshold is used to tackle the shortcoming of a fixed threshold. Third, the M-PF is proposed as the new method for failure prognostic to determine Remaining Useful Life (RUL). The M-PF is based on the assumption of the availability of real-time observation and historical data, where the historical failure data can be used instead of the physical failure model within the particle filter. The feasibility of the framework is validated using Li-ion battery prognostic data obtained from the National Aeronautic and Space Administration (NASA) Ames Prognostic Center of Excellence (PCoE). The experimental results show the following: (1) fewer data dimensions for the input data are required compared to traditional empirical models; (2) the proposed diagnostic approach provides an effective way of diagnosing Li-ion battery fault; (3) the proposed prognostic approach can predict the RUL of Li-ion batteries with small error, and has high prediction accuracy; and, (4) the proposed prognostic approach shows that historical failure data can be used instead of a physical failure model in the particle filter
    • …
    corecore