5,874 research outputs found

    Continuous Uniform Finite Time Stabilization of Planar Controllable Systems

    Get PDF
    Continuous homogeneous controllers are utilized in a full state feedback setting for the uniform finite time stabilization of a perturbed double integrator in the presence of uniformly decaying piecewise continuous disturbances. Semiglobal strong C1\mathcal{C}^1 Lyapunov functions are identified to establish uniform asymptotic stability of the closed-loop planar system. Uniform finite time stability is then proved by extending the homogeneity principle of discontinuous systems to the continuous case with uniformly decaying piecewise continuous nonhomogeneous disturbances. A finite upper bound on the settling time is also computed. The results extend the existing literature on homogeneity and finite time stability by both presenting uniform finite time stabilization and dealing with a broader class of nonhomogeneous disturbances for planar controllable systems while also proposing a new class of homogeneous continuous controllers

    Robust nonlinear control of vectored thrust aircraft

    Get PDF
    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations

    On general systems with network-enhanced complexities

    Get PDF
    In recent years, the study of networked control systems (NCSs) has gradually become an active research area due to the advantages of using networked media in many aspects such as the ease of maintenance and installation, the large flexibility and the low cost. It is well known that the devices in networks are mutually connected via communication cables that are of limited capacity. Therefore, some network-induced phenomena have inevitably emerged in the areas of signal processing and control engineering. These phenomena include, but are not limited to, network-induced communication delays, missing data, signal quantization, saturations, and channel fading. It is of great importance to understand how these phenomena influence the closed-loop stability and performance properties

    Robust output stabilization: improving performance via supervisory control

    Full text link
    We analyze robust stability, in an input-output sense, of switched stable systems. The primary goal (and contribution) of this paper is to design switching strategies to guarantee that input-output stable systems remain so under switching. We propose two types of {\em supervisors}: dwell-time and hysteresis based. While our results are stated as tools of analysis they serve a clear purpose in design: to improve performance. In that respect, we illustrate the utility of our findings by concisely addressing a problem of observer design for Lur'e-type systems; in particular, we design a hybrid observer that ensures ``fast'' convergence with ``low'' overshoots. As a second application of our main results we use hybrid control in the context of synchronization of chaotic oscillators with the goal of reducing control effort; an originality of the hybrid control in this context with respect to other contributions in the area is that it exploits the structure and chaotic behavior (boundedness of solutions) of Lorenz oscillators.Comment: Short version submitted to IEEE TA

    Global sensitivity analysis for the boundary control of an open channel

    Full text link
    The goal of this paper is to solve the global sensitivity analysis for a particular control problem. More precisely, the boundary control problem of an open-water channel is considered, where the boundary conditions are defined by the position of a down stream overflow gate and an upper stream underflow gate. The dynamics of the water depth and of the water velocity are described by the Shallow Water equations, taking into account the bottom and friction slopes. Since some physical parameters are unknown, a stabilizing boundary control is first computed for their nominal values, and then a sensitivity anal-ysis is performed to measure the impact of the uncertainty in the parameters on a given to-be-controlled output. The unknown physical parameters are de-scribed by some probability distribution functions. Numerical simulations are performed to measure the first-order and total sensitivity indices
    • 

    corecore