12,930 research outputs found

    A multi-sensor approach for volcanic ash cloud retrieval and eruption characterization: the 23 November 2013 Etna lava fountain

    Get PDF
    Volcanic activity is observed worldwide with a variety of ground and space-based remote sensing instruments, each with advantages and drawbacks. No single system can give a comprehensive description of eruptive activity, and so, a multi-sensor approach is required. This work integrates infrared and microwave volcanic ash retrievals obtained from the geostationary Meteosat Second Generation (MSG)-Spinning Enhanced Visible and Infrared Imager (SEVIRI), the polar-orbiting Aqua-MODIS and ground-based weather radar. The expected outcomes are improvements in satellite volcanic ash cloud retrieval (altitude, mass, aerosol optical depth and effective radius), the generation of new satellite products (ash concentration and particle number density in the thermal infrared) and better characterization of volcanic eruptions (plume altitude, total ash mass erupted and particle number density from thermal infrared to microwave). This approach is the core of the multi-platform volcanic ash cloud estimation procedure being developed within the European FP7-APhoRISM project. The Mt. Etna (Sicily, Italy) volcano lava fountaining event of 23 November 2013 was considered as a test case. The results of the integration show the presence of two volcanic cloud layers at different altitudes. The improvement of the volcanic ash cloud altitude leads to a mean difference between the SEVIRI ash mass estimations, before and after the integration, of about the 30%. Moreover, the percentage of the airborne “fine” ash retrieved from the satellite is estimated to be about 1%–2% of the total ash emitted during the eruption. Finally, all of the estimated parameters (volcanic ash cloud altitude, thickness and total mass) were also validated with ground-based visible camera measurements, HYSPLIT forward trajectories, Infrared Atmospheric Sounding Interferometer (IASI) satellite data and tephra deposits

    Applications of a High-Altitude Powered Platform (HAPP)

    Get PDF
    A list of potential uses for the (HAPP) and conceptual system designs for a small subset of the most promising applications were investigated. The method was to postulate a scenario for each application specifying a user, a set of system requirements and the most likely competitor among conventional aircraft and satellite systems. As part of the study of remote sensing applications, a parametric cost comparison was done between aircraft and HAPPS. For most remote sensing applications, aircraft can supply the same data as HAPPs at substantially lower cost. The critical parameters in determining the relative costs of the two systems are the sensor field of view and the required frequency of the observations being made. The HAPP is only competitive with an airplane when sensors having a very wide field of view are appropriate and when the phenomenon being observed must be viewed at least once per day. This eliminates the majority of remote sensing applications from any further consideration

    Flamenco tower in ice:an analyses of process optimizations

    Get PDF

    Literature review of the remote sensing of natural resources

    Get PDF
    Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    Applications of airborne remote sensing in atmospheric sciences research

    Get PDF
    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry

    Emerging Technologies and Approaches for In Situ, Autonomous Observing in the Arctic

    Get PDF
    Understanding and predicting Arctic change and its impacts on global climate requires broad, sustained observations of the atmosphere-ice-ocean system, yet technological and logistical challenges severely restrict the temporal and spatial scope of observing efforts. Satellite remote sensing provides unprecedented, pan-Arctic measurements of the surface, but complementary in situ observations are required to complete the picture. Over the past few decades, a diverse range of autonomous platforms have been developed to make broad, sustained observations of the ice-free ocean, often with near-real-time data delivery. Though these technologies are well suited to the difficult environmental conditions and remote logistics that complicate Arctic observing, they face a suite of additional challenges, such as limited access to satellite services that make geolocation and communication possible. This paper reviews new platform and sensor developments, adaptations of mature technologies, and approaches for their use, placed within the framework of Arctic Ocean observing needs

    Opportunistic rain rate estimation from measurements of satellite downlink attenuation: A survey

    Get PDF
    Recent years have witnessed a growing interest in techniques and systems for rainfall surveillance on regional scale, with increasingly stringent requirements in terms of the following: (i) accuracy of rainfall rate measurements, (ii) adequate density of sensors over the territory, (iii) space‐time continuity and completeness of data and (iv) capability to elaborate rainfall maps in near real time. The devices deployed to monitor the precipitation fields are traditionally networks of rain gauges distributed throughout the territory, along with weather radars and satellite remote sensors operating in the optical or infrared band, none of which, however, are suitable for full compliance to all of the requirements cited above. More recently, a different approach to rain rate estimation techniques has been proposed and investigated, based on the measurement of the attenuation induced by rain on signals of pre‐existing radio networks either in terrestrial links, e.g., the backhaul connections in cellular networks, or in satellite‐to‐earth links and, among the latter, notably those between geostationary broadcast satellites and domestic subscriber terminals in the Ku and Ka bands. Knowledge of the above rain‐induced attenuation permits the retrieval of the corresponding rain intensity provided that a number of meteorological and geometric parameters are known and ultimately permits estimating the rain rate locally at the receiver site. In this survey paper, we specifically focus on such a type of “opportunistic” systems for rain field monitoring, which appear very promising in view of the wide diffusion over the territory of low‐cost domestic terminals for the reception of satellite signals, prospectively allowing for a considerable geographical capillarity in the distribution of sensors, at least in more densely populated areas. The purpose of the paper is to present a broad albeit synthetic overview of the numerous issues inherent in the above rain monitoring approach, along with a number of solutions and algorithms proposed in the literature in recent years, and ultimately to provide an exhaustive account of the current state of the art. Initially, the main relevant aspects of the satellite link are reviewed, including those related to satellite dynamics, frequency bands, signal formats, propagation channel and radio link geometry, all of which have a role in rainfall rate estimation algorithms. We discuss the impact of all these factors on rain estimation accuracy while also highlighting the substantial differences inherent in this approach in comparison with traditional rain monitoring techniques. We also review the basic formulas relating rain rate intensity to a variation of the received signal level or of the signal‐to-noise ratio. Furthermore, we present a comprehensive literature survey of the main research issues for the aforementioned scenario and provide a brief outline of the algorithms proposed for their solution, highlighting their points of strength and weakness. The paper includes an extensive list of bibliographic references from which the material presented herein was taken
    • 

    corecore