242 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Robust fault detection for vehicle lateral dynamics: Azonotope-based set-membership approach

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn this work, a model-based fault detection layoutfor vehicle lateral dynamics system is presented. The majorfocus in this study is on the handling of model uncertainties andunknown inputs. In fact, the vehicle lateral model is affectedby several parameter variations such as longitudinal velocity,cornering stiffnesses coefficients and unknown inputs like windgust disturbances. Cornering stiffness parameters variation isconsidered to be unknown but bounded with known compactset. Their effect is addressed by generating intervals for theresiduals based on the zonotope representation of all possiblevalues. The developed fault detection procedure has been testedusing real driving data acquired from a prototype vehicle.Index Terms— Robust fault detection, interval models,zonotopes, set-membership, switched uncertain systems, LMIs,input-to-state stability, arbitrary switching.Peer ReviewedPostprint (author's final draft

    Interval Observer Design for Actuator Fault Estimation of Linear Parameter-Varying Systems

    Get PDF
    International audienceThis work is devoted to fault estimation of discrete-time Linear Parameter-Varying (LPV) systems subject to actuator additive faults and external disturbances. Under the assumption that the measurement noises and the disturbances are unknown but bounded, an interval observer is designed, based on decoupling the fault effect, to compute a lower and upper bounds for the unmeasured state and the faults. Stability conditions are expressed in terms of matrices inequalities. A case study is used to illustrate the effectiveness of the proposed approach

    Mixed active/passive robust fault detection and isolation using set-theoretic unknown input observers

    Get PDF
    2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIEEE This paper proposes a robust fault detection and isolation (FDI) approach that combines active and passive robust FDI approaches. Standard active FDI approaches obtain robustness by using the unknown input observer (UIO) to decouple unknown inputs from residuals. Differently, standard passive FDI approaches achieve robustness by using the set theory to bound the effect of uncertain factors (disturbances and noises). In this paper, we combine the UIO-based and the set-based approaches to produce a mixed robust FDI, which can mitigate the disadvantages and exert the advantages of the two robust FDI approaches. In order to emphasize the role of set theory, the UIO design based on the set theory is named as the set-theoretic UIO (SUIO). A quadrotor subsystem is used to illustrate the effectiveness of the proposed FDI approach.Peer ReviewedPostprint (author's final draft

    Sensor fault diagnosis of singular delayed LPV systems with inexact parameters: an uncertain system approach

    Get PDF
    In this paper, sensor fault diagnosis of a singular delayed linear parameter varying (LPV) system is considered. In the considered system, the model matrices are dependent on some parameters which are real-time measurable. The case of inexact parameter measurements is considered which is close to real situations. Fault diagnosis in this system is achieved via fault estimation. For this purpose, an augmented system is created by including sensor faults as additional system states. Then, an unknown input observer (UIO) is designed which estimates both the system states and the faults in the presence of measurement noise, disturbances and uncertainty induced by inexact measured parameters. Error dynamics and the original system constitute an uncertain system due to inconsistencies between real and measured values of the parameters. Then, the robust estimation of the system states and the faults are achieved with H8 performance and formulated with a set of linear matrix inequalities (LMIs). The designed UIO is also applicable for fault diagnosis of singular delayed LPV systems with unmeasurable scheduling variables. The efficiency of the proposed approach is illustrated with an example.Peer ReviewedPostprint (author's final draft

    Estimation in uncertain switched systems using a bank of interval observers: local vs glocal approach

    Get PDF
    This paper discusses some issues related with the design of a bank of interval observers for uncertain switched systems, in which several sources of uncertainty are considered: parametric uncertainties, unknown disturbances, measurement noise, and unknown switching signal. More specifically, this paper focuses on analyzing the interval estimation accuracy when changes of active mode induce non-positivity of the interval state estimation errors. In particular, it is shown that by combining two types of interval observers, referred to as local and global, the accuracy and reliability of the estimation can be improved. The properties of the obtained so-called glocal observer are investigated and illustrated by means of numerical simulations.acceptedVersio

    Fault tolerant control of uncertain dynamical systems using interval virtual actuators

    Get PDF
    This is the peer reviewed version of the following article: Rotondo D, Cristofaro A, Johansen TA. Fault tolerant control of uncertain dynamical systems using interval virtual actuators. Int J Robust Nonlinear Control. 2018;28:611–624, which has been published in final form at https://doi.org/10.1002/rnc.3888. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.In this paper, a model reference fault tolerant control strategy based on a reconfiguration of the reference model, with the addition of a virtual actuator block, is presented for uncertain systems affected by disturbances and sensor noise. In particular, this paper (1) extends the reference model approach to the use of interval state observers, by considering an error feedback controller, which uses the estimated bounds for the error between the real state and the reference state, and (2) extends the virtual actuator approach to the use of interval observers, which means that the virtual actuator is added to the control loop to preserve the nonnegativity of the interval estimation errors and the boundedness of the involved signals, in spite of the fault occurrence. In both cases, the conditions to assure the desired operation of the control loop are provided in terms of linear matrix inequalities. An illustrative example is used to show the main characteristics of the proposed approach.Peer ReviewedPostprint (author's final draft

    Fault tolerant control of uncertain dynamical systems using interval virtual actuators

    Get PDF
    This is the peer reviewed version of the following article: Rotondo D, Cristofaro A, Johansen TA. Fault tolerant control of uncertain dynamical systems using interval virtual actuators. Int J Robust Nonlinear Control. 2018;28:611–624, which has been published in final form at https://doi.org/10.1002/rnc.3888. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.In this paper, a model reference fault tolerant control strategy based on a reconfiguration of the reference model, with the addition of a virtual actuator block, is presented for uncertain systems affected by disturbances and sensor noise. In particular, this paper (1) extends the reference model approach to the use of interval state observers, by considering an error feedback controller, which uses the estimated bounds for the error between the real state and the reference state, and (2) extends the virtual actuator approach to the use of interval observers, which means that the virtual actuator is added to the control loop to preserve the nonnegativity of the interval estimation errors and the boundedness of the involved signals, in spite of the fault occurrence. In both cases, the conditions to assure the desired operation of the control loop are provided in terms of linear matrix inequalities. An illustrative example is used to show the main characteristics of the proposed approach.Peer ReviewedPostprint (author's final draft

    On-line estimation approaches to fault-tolerant control of uncertain systems

    Get PDF
    This thesis is concerned with fault estimation in Fault-Tolerant Control (FTC) and as such involves the joint problem of on-line estimation within an adaptive control system. The faults that are considered are significant uncertainties affecting the control variables of the process and their estimates are used in an adaptive control compensation mechanism. The approach taken involves the active FTC, as the faults can be considered as uncertainties affecting the control system. The engineering (application domain) challenges that are addressed are: (1) On-line model-based fault estimation and compensation as an FTC problem, for systems with large but bounded fault magnitudes and for which the faults can be considered as a special form of dynamic uncertainty. (2) Fault-tolerance in the distributed control of uncertain inter-connected systems The thesis also describes how challenge (1) can be used in the distributed control problem of challenge (2). The basic principle adopted throughout the work is that the controller has two components, one involving the nominal control action and the second acting as an adaptive compensation for significant uncertainties and fault effects. The fault effects are a form of uncertainty which is considered too large for the application of passive FTC methods. The thesis considers several approaches to robust control and estimation: augmented state observer (ASO); sliding mode control (SMC); sliding mode fault estimation via Sliding Mode Observer (SMO); linear parameter-varying (LPV) control; two-level distributed control with learning coordination

    Zonotopic fault detection observer design for Takagi–Sugeno fuzzy systems

    Get PDF
    This paper considers zonotopic fault detection observer design in the finite-frequency domain for discrete-time Takagi–Sugeno fuzzy systems with unknown but bounded disturbances and measurement noise. We present a novel fault detection observer structure, which is more general than the commonly used Luenberger form. To make the generated residual sensitive to faults and robust against disturbances, we develop a finite-frequency fault detection observer based on generalised Kalman–Yakubovich–Popov lemma and P-radius criterion. The design conditions are expressed in terms of linear matrix inequalities. The major merit of the proposed method is that residual evaluation can be easily implemented via zonotopic approach. Numerical examples are conducted to demonstrate the proposed methodPeer ReviewedPostprint (author's final draft
    • 

    corecore