1,656 research outputs found

    Graph- versus Vector-Based Analysis of a Consensus Protocol

    Get PDF
    The Paxos distributed consensus algorithm is a challenging case-study for standard, vector-based model checking techniques. Due to asynchronous communication, exhaustive analysis may generate very large state spaces already for small model instances. In this paper, we show the advantages of graph transformation as an alternative modelling technique. We model Paxos in a rich declarative transformation language, featuring (among other things) nested quantifiers, and we validate our model using the GROOVE model checker, a graph-based tool that exploits isomorphism as a natural way to prune the state space via symmetry reductions. We compare the results with those obtained by the standard model checker Spin on the basis of a vector-based encoding of the algorithm.Comment: In Proceedings GRAPHITE 2014, arXiv:1407.767

    MDCC: Multi-Data Center Consistency

    Get PDF
    Replicating data across multiple data centers not only allows moving the data closer to the user and, thus, reduces latency for applications, but also increases the availability in the event of a data center failure. Therefore, it is not surprising that companies like Google, Yahoo, and Netflix already replicate user data across geographically different regions. However, replication across data centers is expensive. Inter-data center network delays are in the hundreds of milliseconds and vary significantly. Synchronous wide-area replication is therefore considered to be unfeasible with strong consistency and current solutions either settle for asynchronous replication which implies the risk of losing data in the event of failures, restrict consistency to small partitions, or give up consistency entirely. With MDCC (Multi-Data Center Consistency), we describe the first optimistic commit protocol, that does not require a master or partitioning, and is strongly consistent at a cost similar to eventually consistent protocols. MDCC can commit transactions in a single round-trip across data centers in the normal operational case. We further propose a new programming model which empowers the application developer to handle longer and unpredictable latencies caused by inter-data center communication. Our evaluation using the TPC-W benchmark with MDCC deployed across 5 geographically diverse data centers shows that MDCC is able to achieve throughput and latency similar to eventually consistent quorum protocols and that MDCC is able to sustain a data center outage without a significant impact on response times while guaranteeing strong consistency

    Atomic commitment in transactional DHTs

    Get PDF
    We investigate the problem of atomic commit in transactional database systems built on top of Distributed Hash Tables. DHTs provide a decentralized way to store and look up data. To solve the atomic commit problem we propose to use an adaption of Paxos commit as a non-blocking algorithm. We exploit the symmetric replication technique existing in the DKS DHT to determine which nodes are necessary to execute the commit algorithm. By doing so we achieve a lower number of communication rounds and a reduction of meta-data in contrast to traditional Three-Phase-Commit protocols. We also show how the proposed solution can cope with dynamism due to churn in DHTs. Our solution works correctly relying only on an inaccurate failure detection of node failure which is necessary for systems running over the Internet
    • …
    corecore