186 research outputs found

    State and path coalition effectivity models for logics of multi-player games

    Get PDF
    Please refer to full text to view abstrac

    State and path coalition effectivity models for logics of multi-player games

    Get PDF
    Please refer to full text to view abstrac

    Logics for strategic reasoning and collective decision-making

    Get PDF
    Cette thèse aborde le problème du raisonnement stratégique. Le raisonnement stratégique est un thème de recherches existant depuis e nombreuses années en théorie des jeux. Toutefois, celui-ci a le plus souvent pour objet de déterminer si des équilibres stratégiques existent sans détailler la définition en elle-même de ces stratégies. La construction d'agents artificiels capable de raisonner stratégiquement implique de se poser la question de la représentation de ces stratégies afin que les agents puissent les construire, combiner, comparer et enfin et surtout exécuter. Cette thèse propose un ensemble de logiques pour le raisonnement stratégique et la prise de décision collective. Elle établit dans un premier temps un cadre unifiée pour la définition de jeux, la représentation de stratégies et le raisonnement sur celles-ci dans le contexte des jeux à information parfaite. Ce cadre est ensuite étendu pour prendre en compte les jeux à information imparfaite. Les relations entre les connaissances de groupe, le pouvoir des coalitions ainsi que le partage d'informations dans une coalition sont ensuite étudiés. Dans un dernier temps, est introduit une logique modale permettant de de raisonner sur les choix collectifs, cette logique permet de généraliser les approches logiques existantes pour l'agrégation de jugements. La complexité de ces différents cadres logiques est aussi étudiée et nous montrons que ces différents cadres offre un équilibre pertinent entre efficacité computationnelle et pouvoir d'expression.This thesis proposes a set of logics for modelling strategic reasoning and collective decision-making. It first establishes a unified logical framework for game specifications, strategy representation and strategic reasoning in perfect information games. Based on that, it proposes an epistemic extension to address imperfect information games. To investigate the interplay of group knowledge and coalitional abilities, it further models knowledge sharing within coalitions. Finally it introduces a modal logic for collective choice and generalizes the logic-based approach to judgment aggregation. The complexity analysis of these logics indicates that these frameworks make a good balance between expressive power and computational efficiency

    Logics for strategic reasoning and collective decision-making

    Get PDF
    Strategic decision-making is ubiquitous in everyday life. The analysis of game strategies has been a research theme in game theory for several decades since von Neumann and Morgenstern. Sophisticated models and analysis tools have been developed with wide applications in Economics, Management Science, Social Science and Computer Science, especially in the field of Artificial Intelligence. However, \much of game theory is about the question whether strategic equilibria exist", as Johan van Benthem, a world-leading logician and game-theorist, points out, \but there are hardly any explicit languages for defining, comparing, or combining strategies". Without such a facility it is challenging for computer scientists to build intelligent agents that are capable of strategic decision-making. In the last twenty years, logical approaches have been proposed to tackle this problem. Pioneering work includes Game Logics, Coalition Logic and Alternating-time Temporal Logic (ATL). These logics either provide facilities for expressing and combining games or offer mechanisms for reasoning about strategic abilities of players. But none of them can solve the problem. The intrinsic difficulty in establishing such a logic is that reasoning about strategies requires combinations of temporal reasoning, counterfactual reasoning, reasoning about actions, preferences and knowledge, as well as reasoning about multi-agent interactions and coalitional abilities. More recently, a few new logical formalisms have been proposed by extending ATL with strategy variables in order to express strategies explicitly. However, most of these logics tend to have high computational complexity, because ATL introduces quantifications over strategies (functions), which leaves little hope of building any tractable inference system based on such a logic. This thesis takes up the challenge by using a bottom-up approach in order to create a balance between expressive power and computational efficiency. Instead of starting with a highly complicated logic, we propose a set of logical frameworks based on a simple and practical logical language, called Game Description Language (GDL), which has been used as an official language for General Game Playing (GGP) since 2005. To represent game strategies, we extend GDL with two binary prioritized connectives for combining actions in terms of their priorities specified by these connectives, and provide it with a semantics based on the standard state transition model. To reason about the strategic abilities of players, we further extend the framework with coalition operators from ATL for specifying the strategic abilities of players. More importantly, a unified semantics is provided for both GDL- and ATL- formulas, which allows us to verify and reason about game strategies. Interestingly, the framework can be used to formalize the fundamental game-playing principles and formally derive two well-known results on two-player games: Weak Determinacy and Zermelo's Theorem. We also show that the model-checking problem of the logic is not worse than that of ATL*, an extension of ATL. To deal with imperfect information games, we extend GDL with the standard epistemic operators and provide it with a semantics based on the epistemic state transition model. The language allows us to specify an imperfect information game and formalize its epistemic properties. Meanwhile, the framework allows us to reason about players' own as well as other players' knowledge during game playing. Most importantly, the logic has a moderate computational complexity, which makes it significantly different from similar existing frameworks. To investigate the interplay between knowledge shared by a group of players and its coalitional abilities, we provide a variant of semantics for ATL with imperfect information. The relation between knowledge sharing and coalitional abilities is investigated through the interplay of epistemic and coalition modalities. Moreover, this semantics is able to preserve the desirable properties of coalitional abilities. To deal with collective decision-making, we apply the approach of combining actions via their priorities for collective choice. We extend propositional logic with the prioritized connective for modelling reason-based individual and collective choices. Not only individual preferences but also aggregation rules can be expressed within this logic. A model-checking algorithm for this logic is thus developed to automatically generate individual and collective choices. In many real-world situations, a group making collective judgments may assign individual members or subgroups different priorities to determine the collective judgment. We design an aggregation rule based on the priorities of individuals so as to investigate how the judgment from each individual affects group judgment in a hierarchical environment. We also show that this rule satisfies a set of plausible conditions and has a tractable computational complexity

    Logics for strategic reasoning and collective decision-making

    Get PDF
    Strategic decision-making is ubiquitous in everyday life. The analysis of game strategies has been a research theme in game theory for several decades since von Neumann and Morgenstern. Sophisticated models and analysis tools have been developed with wide applications in Economics, Management Science, Social Science and Computer Science, especially in the field of Artificial Intelligence. However, \much of game theory is about the question whether strategic equilibria exist", as Johan van Benthem, a world-leading logician and game-theorist, points out, \but there are hardly any explicit languages for defining, comparing, or combining strategies". Without such a facility it is challenging for computer scientists to build intelligent agents that are capable of strategic decision-making. In the last twenty years, logical approaches have been proposed to tackle this problem. Pioneering work includes Game Logics, Coalition Logic and Alternating-time Temporal Logic (ATL). These logics either provide facilities for expressing and combining games or offer mechanisms for reasoning about strategic abilities of players. But none of them can solve the problem. The intrinsic difficulty in establishing such a logic is that reasoning about strategies requires combinations of temporal reasoning, counterfactual reasoning, reasoning about actions, preferences and knowledge, as well as reasoning about multi-agent interactions and coalitional abilities. More recently, a few new logical formalisms have been proposed by extending ATL with strategy variables in order to express strategies explicitly. However, most of these logics tend to have high computational complexity, because ATL introduces quantifications over strategies (functions), which leaves little hope of building any tractable inference system based on such a logic. This thesis takes up the challenge by using a bottom-up approach in order to create a balance between expressive power and computational efficiency. Instead of starting with a highly complicated logic, we propose a set of logical frameworks based on a simple and practical logical language, called Game Description Language (GDL), which has been used as an official language for General Game Playing (GGP) since 2005. To represent game strategies, we extend GDL with two binary prioritized connectives for combining actions in terms of their priorities specified by these connectives, and provide it with a semantics based on the standard state transition model. To reason about the strategic abilities of players, we further extend the framework with coalition operators from ATL for specifying the strategic abilities of players. More importantly, a unified semantics is provided for both GDL- and ATL- formulas, which allows us to verify and reason about game strategies. Interestingly, the framework can be used to formalize the fundamental game-playing principles and formally derive two well-known results on two-player games: Weak Determinacy and Zermelo's Theorem. We also show that the model-checking problem of the logic is not worse than that of ATL*, an extension of ATL. To deal with imperfect information games, we extend GDL with the standard epistemic operators and provide it with a semantics based on the epistemic state transition model. The language allows us to specify an imperfect information game and formalize its epistemic properties. Meanwhile, the framework allows us to reason about players' own as well as other players' knowledge during game playing. Most importantly, the logic has a moderate computational complexity, which makes it significantly different from similar existing frameworks. To investigate the interplay between knowledge shared by a group of players and its coalitional abilities, we provide a variant of semantics for ATL with imperfect information. The relation between knowledge sharing and coalitional abilities is investigated through the interplay of epistemic and coalition modalities. Moreover, this semantics is able to preserve the desirable properties of coalitional abilities. To deal with collective decision-making, we apply the approach of combining actions via their priorities for collective choice. We extend propositional logic with the prioritized connective for modelling reason-based individual and collective choices. Not only individual preferences but also aggregation rules can be expressed within this logic. A model-checking algorithm for this logic is thus developed to automatically generate individual and collective choices. In many real-world situations, a group making collective judgments may assign individual members or subgroups different priorities to determine the collective judgment. We design an aggregation rule based on the priorities of individuals so as to investigate how the judgment from each individual affects group judgment in a hierarchical environment. We also show that this rule satisfies a set of plausible conditions and has a tractable computational complexity

    Formal methods for analysing, coordinating, and controlling decisions in multi-agent systems

    Get PDF
    Multiagentensysteme sind verteilte (Computer)Systeme, die sich aus autonomen interagierenden Systemkomponenten, bezeichnet als Agenten, zusammensetzen. Sie bieten ein flexibles Framework zur Modellierung und Analyse von interaktiven Systemen, in denen Kooperation, Eigeninteresse und Autonomie eine entscheidende Rolle spielen. Dies ist zum Beispiel der Fall in Smart Grids. Eine Herausforderung in solchen Systemen ist die Kontrolle und die Koordination von Systemausführungen. Agenten handeln autonom und lassen sich daher oftmals nicht direkt kontrollieren, sondern bestenfalls beeinflussen. Aufgrund der Autonomie und des Selbstinteresses, ist es schwierig, angemessene Kontrollmechanismen zu finden. Die vorliegende Arbeit behandelt formale Grundlagen zu den Themen Entscheidungsfindung, Koordination und Kontrolle in Multiagentensystemen. Insbesondere werden in diesem Zusammenhang Logiken zur Analyse und Spezifikation von strategischen Fähigkeiten von Agenten, unter diversen Restriktionen, untersucht. Es werden formale Ansätze zur Beeinflussung und Überwachung von Systemausführungen eingeführt. In einem weiteren Teil der Arbeit wird mittels spieltheoretischer Verfahren analysiert, wie rationale Agenten interagieren und Entscheidungen treffen. Es wird argumentiert, dass formale Methoden und Werkzeuge zur Analyse und Kontrolle von autonomen Systemen entscheidend für deren verlässliche Entwicklung sind.Multi-agent systems (MASs) are distributed (computer) systems composed of autonomously (inter-)acting system components referred to as agents. MASs offer a flexible framework to model and analyse many real world settings in which cooperation, self-interest, and autonomy are crucial elements. A key challenge in such settings is the control and coordination of behavior. However, due to the agents' autonomy behavior can often not be controlled, but at best be influenced in some way or another. For example, agents can be given incentives in order to affect their decision-making in such a way that the emergent behavior of all actors is desirable from the system's perspective. The properties of self-interest and autonomy make it challenging to find appropriate control mechanisms. Existing coordination and control approaches from the distributed system literature are often not applicable due to the lack of direct control on the system components of MASs. New methods and tools are needed. In this thesis formal foundations related to the subjects of decision making, coordination and control in MASs are studied. In particular, we investigate (extensions of) temporal and strategic logics which capture specific capabilities of agents that influence their decision making. We also propose formal approaches to control, coordinate and monitor the emergent behavior in MASs. In the last part of the thesis we analyse how rational agents interact and make decisions using game theoretical methods. We argue that such formal approaches and tools to analyse and control autonomous systems are crucial for the development of reliable and flexible systems and will become even more crucial in the near future

    Quantifying over information change with common knowledge

    Get PDF
    Public announcement logic (PAL) extends multi-agent epistemic logic with dynamic operators modelling the effects of public communication. Allowing quantification over public announcements lets us reason about the existence of an announcement that reaches a certain epistemic goal. Two notable examples of logics of quantified announcements are arbitrary public announcement logic (APAL) and group announcement logic (GAL). While the notion of common knowledge plays an important role in PAL, and in particular in characterisations of epistemic states that an agent or a group of agents might make come about by performing public announcements, extensions of APAL and GAL with common knowledge still haven’t been studied in detail. That is what we do in this paper. In particular, we consider both conservative extensions, where the semantics of the quantifiers is not changed, as well as extensions where the scope of quantification also includes common knowledge formulas. We compare the expressivity of these extensions relative to each other and other connected logics, and provide sound and complete axiomatisations. Finally, we show how the completeness results can be used for other logics with quantification over information change.publishedVersio

    Logic and Interactive RAtionality. Yearbook 2009

    Get PDF

    Reasoning about Dependence, Preference and Coalitional Power

    Full text link
    This paper presents a logic of preference and functional dependence (LPFD) and its hybrid extension (HLPFD), both of whose sound and strongly complete axiomatization are provided. The decidability of LPFD is also proved. The application of LPFD and HLPFD to modelling cooperative games in strategic and coalitional forms is explored. The resulted framework provides a unified view on Nash equilibrium, Pareto optimality and the core. The philosophical relevance of these game-theoretical notions to discussions of collective agency is made explicit. Some key connections with other logics are also revealed, for example, the coalition logic, the logic functional dependence and the logic of ceteris paribus preference
    • …
    corecore